
OmniConnect™
Component Integration Services User’s Guide for
Sybase® Adaptive Server™ Enterprise and OmniConnect

Adaptive Server Enterprise Version 12

Document ID: 32702-01-1200-01

Last revised: October 1999

Copyright © 1989-1999 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, NetImpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 9/99

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

iii

About This Book .. vii

CHAPTER 1 Introduction ... 1
New Features in Adaptive Serve Enterprise 12.x............................. 3
Who Can Use Component Integration Services............................... 4
Steps Needed to Use Component Integration Services................... 5

CHAPTER 2 Understanding Component Integration Services 7
Basic Concepts .. 8

Remote Table Access ... 8
Access Methods .. 8
Server Classes .. 8
Object Types ... 9
Interface to Remote Servers ... 10

Topics and Issues .. 15
Using the create existing table Command............................... 15
auto identity Option ... 17
Passthrough Mode .. 17
Transaction Management.. 22
Remote Procedures as Proxy Tables...................................... 27
text and image Datatypes.. 30

Internal Operations... 35
Connection Management .. 35
Query Processing.. 35
Query Plan Execution.. 42
Triggers ... 45
Referential Integrity ... 46
Security Issues .. 46
Trusted Mode .. 46

Adaptive Server Features and Remote Data Access..................... 47
ANSI Joins... 47
50-Table Join Limit .. 48
Remote Server Logins... 48

Contents

iv

Adaptive Server Features Not Supported by CIS 49
Parallel Processing.. 49
External Security ... 49

CHAPTER 3 Using Component Integration Services 51
Getting Started with Component Integration Services 52

Adding a Remote Server ... 52
Mapping Remote Objects to Local Proxy Tables 54
Join Between Two Remote Tables.. 56

Configuration and Tuning... 60
Using sp_configure.. 60
Global Variables for Status.. 64

Java in the Database ... 65
Quickpass.. 65
@@textsize... 65
Constraints on Java Class Columns 65
Error Messages ... 66

RPC Handling and Component Integration Services 67
Site Handler Handling Outbound RPCs 67
Component Integration Services Handling Outbound RPCs... 68
Sending Text as RPC Parameters .. 69
Sending Large Data Chunks ... 70

dbcc Commands .. 74
dbcc Options ... 74
Trace Flags ... 75
Using update statistics .. 76

Shared Memory Requirements .. 78
Additional Component Integration Services Memory

Requirements ... 79
Backing Up Your System ... 80

CHAPTER 4 Server Classes ... 81
Defining Remote Servers ... 82

Server Class ASEnterprise.. 82
Server Class ASAnywhere .. 82
Server Class ASIQ .. 82
Server Class sql_server .. 83
Server Class db2... 83
Server Class direct_connect ... 83
Server Class sds ... 84
Server Class generic ... 85

Datatype Conversions.. 86
Remote Server Capabilities ... 87

Contents

v

Transact-SQL Commands ... 88
alter database .. 90
alter table ... 92
begin transaction.. 97
case.. 100
close... 102
commit transaction ... 103
connect to...disconnect .. 106
create database ... 108
create existing table ... 110
create index.. 119
create proxy_table.. 121
create table .. 122
create trigger .. 126
deallocate cursor.. 128
declare cursor .. 129
delete ... 130
drop database .. 134
drop index .. 135
drop table ... 137
execute... 139
fetch ... 140
Functions.. 142
insert .. 147
open ... 149
prepare transaction .. 150
readtext .. 152
rollback transaction .. 154
select.. 156
set .. 161
setuser ... 163
truncate table ... 164
update .. 165
update statistics ... 170
writetext.. 172

APPENDIX A Troubleshooting.. 173
Problems Accessing Component Integration Services 174
Problems Using Component Integration Services 175

Unable to Access Remote Server ... 175
Unable to Access Remote Object ... 177
Problem Retrieving Data From Remote Objects 178

If You Need Help.. 182

Contents

vi

vii

About This Book

Audience
This book is written for Sybase® Adaptive Server™ Enterprise and
OmniConnect™ System Administrators, database administrators, and
users.

How to Use This Book
This guide will assist you in configuring and using Component Integration
Services. The book includes the following chapters:

• Chapter 1, “Introduction,” provides an overview of Component
Integration Services.

• Chapter 2, “Understanding Component Integration Services,”
provides a framework for understanding how Component Integration
works. This chapter includes both basic concepts and in-depth topics.

• Chapter 3, “Using Component Integration Services,” includes a
tutorial designed to help new users get Component Integration
Services up and running, and provides configuration and tuning
information.

• Chapter 4, “Server Classes,” describes the Component Integration
Services server classes required to access remote databases.

• Appendix A, “Troubleshooting,” provides troubleshooting tips if you
encounter a problem with Component Integration Services.

Adaptive Server Enterprise Documents
The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

Adaptive Server Enterprise Documents

viii

• The Release Bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the Release Bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use SyBooks™-on-the-
Web.

• The Adaptive Server installation documentation for your platform –
describes installation and upgrade procedures for all Adaptive Server and
related Sybase products.

• The Adaptive Server configuration documentation for your platform –
describes configuring a server, creating network connections, configuring
for optional functionality, such as auditing, installing most optional system
databases, and performing operating system administration tasks.

• Transact-SQL User’s Guide – documents Transact-SQL®, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources and user and system
databases, and specifying character conversion, international language,
and sort order settings.

• Adaptive Server Reference Manual – contains detailed information about
all Transact-SQL commands, functions, procedures, and datatypes. This
manual also contains a list of the Transact-SQL reserved words and
definitions of system tables.

• Performance and Tuning Guide – explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issues that affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

• The Utility Programs manual for your platform – documents the Adaptive
Server utility programs, such as isql and bcp, which are executed at the
operating system level.

• Security Features User’s Guide – provides instructions and guidelines for
using the security options provided in Adaptive Server from the
perspective of the non-administrative user.

 About This Book

ix

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide for Adaptive Server
Enterprise and OmniConnect – explains how to use the Adaptive Server
Component Integration Services feature to connect remote Sybase and
non-Sybase databases.

• Adaptive Server Glossary – defines technical terms used in the Adaptive
Server documentation.

Other Sources of Information
Use the SyBooks™ and SyBooks-on-the-Web online resources to learn more
about your product:

• SyBooks documentation is on the CD that comes with your software. The
DynaText browser, also included on the CD, allows you to access
technical information about your product in an easy-to-use format.

Refer to Installing SyBooks in your documentation package for
instructions on installing and starting SyBooks.

• SyBooks-on-the-Web is an HTML version of SyBooks that you can access
using a standard Web browser.

To use SyBooks-on-the-Web, go to http://www.sybase.com, and choose
Documentation.

Conventions
What you type to the computer screen is shown as:

Enter text in an entry field

Computer output is shown as:

OmniConnect returns results.

Command arguments you replace with a non-generic value are shown in
italics:

machine_name

If You Need Help

x

If You Need Help
Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, ask a
designated person at your site to contact Sybase Technical Support.

1

C H A P T E R 1 Introduction

Component Integration Services is a feature that extends Adaptive Server
capabilities and provides enhanced interoperability. It is the core
interoperability feature of OmniConnect.

Component Integration Services allows Adaptive Server and
OmniConnect to present a uniform view of enterprise data to client
applications and provides location transparency to enterprise-wide data
sources.

Component Integration Services allows users to access both Sybase and
non-Sybase databases on different servers. These external data sources
include host data files and tables, views and RPCs (remote procedure
calls) in database systems such as Adaptive Server, Oracle, and DB2, as
shown in Figure 1-1.

Figure 1-1: Component Integration Services connects to multiple
vendor databases

Using Component Integration Services, you can:

• Access tables in remote servers as if the tables were local.

DB2 in NY

Oracle in London

Sybase in Tokyo
ADAPTIVE SERVER

dataserver CIS

2

• Perform joins between tables in multiple remote, heterogeneous servers.
For example, it is possible to join tables between an Oracle database
management system (DBMS) and an Adaptive Server, and between tables
in multiple Adaptive Servers.

• Transfer the contents of one table into a new table on any supported remote
server by means of a select into statement.

• Provide applications, such as PowerBuilder®, Microsoft Access, and
DataEase, with transparent access to heterogeneous data.

• Maintain referential integrity across heterogeneous data sources.

• Access native remote server capabilities using the Component Integration
Services passthrough mode.

CHAPTER 1 Introduction

3

New Features in Adaptive Serve Enterprise 12.x
The Adaptive Server 12.x release includes these new Component Integration
Services (CIS) features:

• New dbcc commands – dbcc cis showcaps and dbcc cis setcaps allow
examination and modification of server capabilities.

• Proxy databases – A proxy database is created containing proxy tables.
Metadata for proxy tables is imported automatically from the remote
location which contains the actual tables. This metadata is then used to
create proxy tables within the proxy database.

• Synchronizing proxy tables – Proxy tables in a proxy database can be
resynchronized using the alter database command.

• Java in the database

• Support for ANSI joins

• 50-table join limit

• New global variables

• Support for remote server logins

• Two-phase commit transaction management

• Support for execute immediate

• New set commands

• System proxy databases in support of high availability clusters

• create table syntax

• create existing table syntax

• create proxy_table

• RPC’s as proxy tables

Who Can Use Component Integration Services

4

Who Can Use Component Integration Services
Component Integration Services can be used by anyone who needs to access
multiple data sources or legacy data. It can also be used by anyone who needs
to migrate data from one server to another.

A single server is often used to access data on multiple external servers.
Component Integration Services manages the data regardless of the location of
the external servers. Data management is transparent to the client application.

Component Integration Services, in combination with EnterpriseConnect™
products, provides transparent access to a wide variety of data sources,
including:

• Oracle

• Ingres

• Informix

• Rdb

• IBM databases including:

• DB2 for MVS

• DB2/400

• DB2/2

• DB2 for VM (SQL/DS)

• Microsoft SQL Server

• Adaptive Server Enterprise

• Adaptive Server Anywhere™

• Mainframe data, including:

• ADABAS

• IDMS

• IMS

• VSAM

The list of certified and supported sources and front-end tools is increasing. For
current information on all data sources, versions supported, and products
required for support, please call the Sybase FAX on Demand at 1-800-423-
8737. Request the “Partner Certification Report.”

CHAPTER 1 Introduction

5

Steps Needed to Use Component Integration Services
To get Component Integration Services running:

• Make sure you have installed the Component Integration Services or the
OmniConnect option.

• Issue the command sp_configure “enable cis”, 1 (This is the default for
Adaptive Server Enterrprise 12.)

• Restart Adaptive Server

• Install DirectConnect server(s) or gateways for the external data sources
you choose to access (Oracle, Ingres, DB2, Informix, Rdb).

• Configure the server to access remote objects as described in Chapter 3,
“Using Component Integration Services.”

Steps Needed to Use Component Integration Services

6

7

C H A P T E R 2 Understanding Component
Integration Services

This chapter discusses some of the essential features of Component
Integration Services. It is intended to help you understand how Adaptive
Server works with the Component Integration Services option configured.
The chapter includes the following topics:

Name Page

Basic Concepts 8

Topics and Issues 15

Internal Operations 35

Adaptive Server Features Not Supported by CIS 49

Basic Concepts

8

Basic Concepts
Before accessing remote tables with Component Integration Services,
you must have a valid interfaces file (or sql.ini file if you are using Windows
NT). For information on setting up an interfaces file, see the configuration
documentation for your platform.

Remote Table Access
The ability to access remote (or external) tables as if they were local is a
hallmark of Component Integration Services. Component Integration Services
presents tables to a client application as if all the data in the tables were stored
locally. Internally, when a query involving remote tables is executed, the
storage location is determined, and the remote location is accessed so that data
can be retrieved.

The access method used to retrieve remote data is determined by two attributes
of the external object:

• The server class associated with the remote object

• The object type

To achieve location transparency, which means remote tables appear as local
tables to the client, tables must first be mapped to their corresponding external
locations. This mapping is performed by means of stored procedures. See the
Adaptive Server Reference Manual for more information on stored procedures.

Access Methods
Access methods form the interface between the server and an external object.
For each server class, there is a separate access method that handles all
interaction between Adaptive Server and remote servers of the same class.

Server Classes
A server class must be assigned to each server when it is added by means of the
system procedure sp_addserver. There are seven server classes, each of which
specifies the access method used to interact with the remote server. The server
classes are:

CHAPTER 2 Understanding Component Integration Services

9

• ASEnterprise – Used if the server is an Adaptive Server version 11.5 or
later. This is the deault server class.

• ASAnywhere – Used if the server is an Adaptive Server Anywhere version
6.0 or later.

• ASIQ – Used if the server is an Adaptive Server versio 12.0 or later.

• sql_server – indicates that the server is a Sybase SQL Server™ or an
Adaptive Server or a Microsoft SQL Server. Component
Integration Services determines whether the Sybase server is a release
10.0 or later server (supports cursors and dynamic SQL) or a pre-release
10.0 server (does not support cursors or dynamic SQL).

• local – the local server. There can be only one.

• direct_connect – indicates that the server is an Open Server™ application
that conforms to the interface requirements of a DirectConnect™ server.

• access_server – a synonym for server class direct_connect for
compatibility with previous releases.

• db2 – indicates that the server is a gateway to DB2 or DB2-compatible
databases. Net-Gateway™ and Database Gateway for DB2, AS/400,
InfoHub, and SQL/DS fall into this category.

• generic – indicates that the server is an Open Server application that
conforms to the interface requirements of a Generic Access Module.

• sds – indicates that the server conforms to the interface requirements of a
Specialty Data Store.

Object Types
The server presents a number of object types to client applications as if they
were local tables. Supported object types are:

• table – The object in a remote server of any class is a relational table. This
is the default type.

• view – The object in a remote server of any class is a view. Component
Integration Services treats views as if they were local tables without
any indexes.

• rpc – The object in a remote server of any class is an RPC. Component
Integration Services treats the result set from the RPC as a read-only
table.

Basic Concepts

10

Interface to Remote Servers
The interface between the server and remote servers is handled by the Open
Client software, Client-Library™. The Client-Library features that are used to
implement the interface are dependent upon the class of server with which
Component Integration Services is interacting.

For example, if the server class is direct_connect (access_server), a number of
features such as cursor and dynamic requests are used. These features are not
used by a server of class generic.

Before the server can interact with a remote server, you need to configure the
following:

• Remote server addition to the interfaces file (or sql.ini file if you are using
Windows NT)

• Remote server definition

• Remote server login information

• Remote object definition

Remote Server
Definition

Remote servers are defined by means of the stored procedure sp_addserver.
This procedure is documented in the Adaptive Server Reference Manual. When
using release 12.x you must name the local server.

Logging into Remote
Servers

Once the remote server has been configured, login information must be
provided. By default, the server uses the names and passwords of its clients
whenever it connects to a remote server on behalf of those clients. However,
this default can be overridden by the use of the stored procedure
sp_addexternlogin. This procedure allows a system administrator to define
the name and password for each user who connects to a remote server.

Using connect to server_name, you can verify that the server configuration is
correct. This command establishes a passthrough mode connection to the
remote server. Passthrough mode allows clients to communicate with remote
servers in native syntax. This passthrough mode remains in effect until you
issue a disconnect command.

Defining Remote
Objects

Once a remote server has been properly configured, objects in that remote
server cannot be accessed as tables until a mapping between them and a local
object (proxy table) has been established.

You can create new tables on remote servers, and you can define the schema
for an existing object in a remote server. The procedures for both are similar.

You can use one of two methods for defining the storage location of remote
objects:

CHAPTER 2 Understanding Component Integration Services

11

1 Define the storage location of individual objects

2 Define the default location of all objects in a database

Defining the Storage Location of Individual Objects

Defining individual object storage locations is done by means of the system
procedure sp_addobjectdef or the use of the at pathname syntax. This
procedure allows you to associate a remote object with a local proxy table
name. The remote object may or may not exist before you do the mapping.
Complete syntax for sp_addobjectdef is provided in the Adaptive Server
Reference Manual.

Defining the Default Storage Location for Tables

Defining the default storage location for all tables in a given database is done
by means of the stored procedure sp_defaultloc. This procedure establishes
the location of tables that are to be created for a given database. The remote
objects may or may not already exist. You can override sp_defaultloc with
sp_addobjectdef for individual tables. sp_defaultloc can not be used when
local tables are required. The syntax for sp_defaultloc is provided in the
Adaptive Server Reference Manual.

Using the create [existing] table Command

Once you have defined the storage location, you can create the table as a new
or existing object. If the table does not already exist at the remote location, use
the create table syntax. If it already exists, use the create existing table
syntax. If the object type is rpc, only the create existing table syntax is
allowed.

When a create existing table statement is received, and the object type is
either table or view, the existence of the remote object is checked by means of
the catalog stored procedure sp_tables. If the object exists, then its column and
index attributes are obtained. Column attributes are compared with those
defined for the object in the create existing table statement. Column name,
type, length, and null property are checked. Index attributes are added to the
sysindexes system table.

Once the object has been created, either as a new or an existing object, the
remote object can be queried by using its local name.

Basic Concepts

12

Using Create Proxy Database

When a user proxy database is created, metadata for the proxy tables is
imported automatically from the remote location which contains the actual
tables. This metadata is then used to create proxy tables within the proxy
database.

To create a proxy database use the create database command:
create database <dbname>

[create database options]
[with default_location = ‘pathname’
[for proxy_update]]

Use the clause with default_location to specify the storage location of any new
tables. Use the for proxy_update to specify the location from which metadata
is imported for automatic proxy table creation. The for proxy_update clause
establishes the database as a proxy database; the with default_location clause
defines the location from which proxy tables are imported. Without the for
proxy_update clause, the behavior of the with default_location clause is the
same as that provided by the stored procedure sp_defaultloc. With
sp_defaultloc a default storage location is established for new and existing
table creation, but automatic import of proxy table definitions is not performed
during the processing of the create database command.

The value of pathname is a string identifier in the following format:

servername.dbname.owner.

Note: the dots are significant, and all three must be present! Each field in this
string is described as follows:

• servername - required field; represents the name of the server that owns
the objects to be referenced by proxy tables. Must exist in
master.dbo.sysservers.srvname.

• dbname - may be omitted. The name of the database within servername
which contains objects to be referenced by proxy tables

• owner - may be omitted. The name of the owner of objects to be referenced
by proxy tables. This may be restrictive, such that if more than one user
owns objects in dbname, specifying the owner will select only those
objects owned by that user. Proxy tables will not be created for objects
owned by other users.

If for proxy_update is specified with no default_location, an error will be
reported.

When a proxy database is created (using the for proxy_update option), CIS
functions will be called upon to:

CHAPTER 2 Understanding Component Integration Services

13

• provide an estimate of the database size required to contain all proxy tables
representing the actual tables/views found in the primary server’s
database. This estimate will be provided in terms of the number of
database pages needed to contain all proxy tables and indexes. This size
will be used if no size is specified, and no database devices are specified.

Note: if the database is created with specific size specifications [on
device_name = nn], or if a device name is specified with no size [on
device_name], then the size requirements for the proxy database will not
be estimated; it is assumed in this case that the user or dba wants to
override the default size calculated for the proxy database.

• create all proxy tables representing the actual tables/views found in the
companion server’s database. Proxy tables are not created for system
tables.

Note: Before the proxy tables are created, the quoted identifier state is
turned on, and each table is created with quotes surrounding the table
name and column name. This allows the creation of tables containing
names that may be Sybase Transact-SQL reserved words. When all proxy
tables are created, the quoted identifier state is restored to its original
setting.

• grant all permissions on proxy tables to public

• add the guest user to the proxy database

• grant create table permission to public

• The database status will be set to indicate that this database is a user proxy
database. This is done by setting a status field in
master.dbo.sysdatabases.status3 (0x0001, DBT3_USER_PROXYDB).

After the database has been created, it will contain a proxy table for each table
or view found in the default_location. Users can create additional objects,
such as procedure, views, rules, defaults, etc., and both DDL and DML
statements that operate on proxy tables will behave as documented in the
Sybase Component Integration Services User Guide.

The only exception to this is the alter database command. New syntax and
capabilities of this command are described in the next section.

Meta Table Synchronization

At times, it may be necessary for a DBA to force re-synchronization of the
proxy tables contained within the proxy database. Do this with the alter
database command:

Basic Concepts

14

alter database <dbname>
[alter database options]
[for proxy_update]

If the for proxy_update clause is entered with no other options, the size of the
database will not be extended; instead, the proxy tables, if any, will be dropped
within the proxy database and re-created from the metadata obtained from the
pathname specified during create database ... with default_location =
‘pathname’

If this command is used with other options to extend the size of the database,
the proxy table synchronization is performed after the size extensions are
made.

The purpose of this alter database extension is to provide a DBA with an easy-
to-use, single step operation with which to obtain an accurate and up-to-date
proxy representation of all tables at a single remote site.

This re-synchronization is supported for all external data sources, and not just
the primary server in an HA-cluster environment. Also, a database need not
have been created with the for proxy_update clause. If a default storage
location has been specified, either through the create database command or
with sp_defaultloc , the metadata contained within the database can be
synchronized with the metadata at the remote storage location.

Certain behavior is implied by the use of create/alter database to specify a
proxy database:

• Modification to the primary location specified with the create database
command will not be allowed using alter database.

• local tables cannot be created in the proxy database. create table
commands will result in the creation of proxy tables, and the actual table
will be created at the remote location.

• The primary location of the table may be specified in the create table
command, using the at “pathname” syntax. If the pathname differs from
the primary location, then the alter database command will not
synchronize the metadata for this table.

• To change the primary location, first drop the database then re-create it
with a new pathname specified in the with default_location =
“pathname” clause. If the location is changed using sp_defaultloc , then
the new location will be used to provide metadata synchronization, and
proxy tables that were created with the prior location will not be
synchronized, and in fact may be dropped and replaced if the name
conflicts with that of tables at the new location.

CHAPTER 2 Understanding Component Integration Services

15

Topics and Issues
The following topics, commands, and processes are key features of
Component Integration Services and are described in the following
sections:

• Using the create existing table Command

• auto identity Option

• Passthrough Mode

• Transaction Management

• Remote Procedures as Proxy Tables

• text and image Datatypes

Using the create existing table Command
The create existing table command allows the definition of existing tables
(proxy tables). The syntax for this option is similar to the create table
command and reads as follows:

create existing table table_name (column_list)
 [on segment_name]
[[external {table | procedure}] at pathname]

The action taken by the server when it receives this command is quite different
from the action it takes when it receives the create table command, however.
In this case, a new table is not created at the remote location; instead, the table
mapping is checked, and the existence of the underlying object is verified. If
the object does not exist (either host data file or remote server object), the
command is rejected with an error message.

If the object does exist, its attributes are obtained and used to update system
tables sysobjects, syscolumns, and sysindexes.

• The nature of the existing object is determined.

• For remote server objects (other than RPCs), column attributes found for
the table or view are compared with those defined in the column_list.
Column names must match identically (although case is ignored), column
types and lengths must match, or at least be convertible, and the NULL
attributes of the columns must match. (See the data type conversion tables
in Chapter 4, “Server Classes.”)

Topics and Issues

16

• Index information from the host data file or remote server table is
extracted and used to create rows for the system table sysindexes. This
defines indexes and keys in server terms and enables the query optimizer
to consider any indexes that may exist on this table.

• The on segment_name clause is processed locally and is not passed to a
remote server.

• Referential constraints are passed to the remote location when appropriate.
See Chapter 4, “Server Classes.”

After successfully defining an existing table, issue an update statistics
command for the table.This allows the query optimizer to make intelligent
choices regarding index selection and join order.

Datatype Conversions

When you use the create table or create existing table commands, you must
specify all datatypes, using recognized Adaptive Server datatypes. If the
remote server tables reside on a class of server that is heterogeneous, the
datatypes of the remote table are converted into the specified Adaptive
Server types automatically when the data is retrieved. If the conversion
cannot be made, the create table or create existing table commands do not
allow the table to be created or defined.

Chapter 4, “Server Classes,” contains a section for each supported server class
that describes all possible datatype conversions that are implicitly performed
by the server.

Example of Remote Table Definition

The following example illustrates the steps necessary to define the remote
Adaptive Server table, authors, starting with the server definition:

1 Define a server named SYBASE. Its server class is sql_server, and its
name in the interfaces file is SYBASE:

exec sp_addserver SYBASE, sql_server, SYBASE

2 Define a remote login alias. This step is optional. User “sa” is known to
remote server SYBASE as user “sa,” password “timothy”:

exec sp_addexternlogin SYBASE, sa, sa, timothy

3 Add an object definition for the remote authors table, to be known locally
as authors:

CHAPTER 2 Understanding Component Integration Services

17

exec sp_addobjectdef authors,
"SYBASE.pubs2.dbo.authors", "table"

4 Define the remote authors table:

create existing table authors
 (
 au_id id not null,
 au_lname varchar(40) not null,
 au_fname varchar(20) not null,
 phone char(12) not null,
 address varchar(40) null,
 city varchar(20) null,
 state char(2) null,
 country varchar(12) null,
 postalcodechar(10) null
)
at "SYBASE.pubs2.dbo.authors", "table"

5 Update statistics in tables to ensure reasonable choices by the query
optimizer:

update statistics authors

6 Execute a query to test the configuration:

select * from authors where au_lname = ’Carson’

auto identity Option
When the Adaptive Serverauto identitydatabase option is enabled, an
IDENTITY column is added to any tables that are created in the database. The
column name is CIS_IDENTITY_COL, for proxy tables, or
SYB_IDENTITY_COL, for local tables. In either case, the column can be
referenced using the syb_identity keyword.

Passthrough Mode
Passthrough mode is provided within Component Integration Services as a
means of enabling a user to perform native operations on the server to which
the user is being “passed through.”

Topics and Issues

18

For example, requesting passthrough mode for an Oracle server, allows you to
send native Oracle SQL statements to the Oracle DBMS. Results are converted
into a form that is usable by the Open Client™ application and passed back to
the user.

The Transact-SQL® parser and compiler are bypassed in this mode, and each
language batch received from the user is passed directly to the server to which
the user is connected in passthrough mode. Results from each batch are
returned to the client.

There are several ways to use passthrough mode:

• The connect to command

• The sp_autoconnect stored procedure

• The sp_passthru stored procedure

• The sp_remotesql procedure

The connect to Command

The connect to command enables users to specify the server to which a
passthrough connection is required. The syntax of the command is as follows:

connect to server_name

where server_name is the name of a server added to the sysservers table, with
its server class and network name defined. See sp_addserver in the Adaptive
Server Reference Manual.

When establishing a connection to server_name on behalf of the user, the
server uses:

• A remote login alias set using sp_addexternlogin, or

• The name and password used to communicate with the Adaptive Server.

In either case, if the connection cannot be made to the server specified, the
reason is contained in a message returned to the user.

CHAPTER 2 Understanding Component Integration Services

19

Once a passthrough connection has been made, the Transact-SQL parser and
compiler are bypassed when subsequent language text is received. Any
statements received by the server are passed directly to the specified remote
server.

Note Some database management systems do not recognize more than one
statement at a time and produce syntax errors if, for example, multiple select
statements were received as part of a single language text buffer.

After statements are passed to the requested server, any results are converted
into a form that can be recognized by the Open Client interface and sent back
to the client program.

To exit from passthrough mode, issue the disconnect, or disc, command.
Subsequent language text from this client is then processed using the Transact-
SQL parser and compiler.

Permission to use the connect to command must be explicitly granted by the
System Administrator. The syntax is:

grant connect to user_name

To revoke permission to use the connect to, the syntax is:

revoke connect from user_name

The connect to permissions are stored in the master database. To globally
grant or revoke permissions to “public”, the System Administrator sets the
permissions in the master database; the effect is server-wide, regardless of
what database is being used. The System Administrator can only grant or
revoke permissions to or from a user, if the user is a valid user of the master
database.

The System Administrator can grant or revoke “all” permissions to or from
“public” within any database. If the permissions are in the master database,
“all” includes the connect to command. If they are in another database, “all”
does not include the connect to command.

Example The System Administrator wants to revoke permission from “public” and
wants only the user “fred” to be able to execute the connect to command.
“fred” must be made a valid user of master. To do this, the System
Administrator issues the following commands in master:

revoke connect from public
 sp_adduser fred
 grant connect to fred

Topics and Issues

20

sp_autoconnect
Some users may always require a passthrough connection to a given server. If
this is the case, Component Integration Services can be configured so
that it automatically connects these users to a specified remote server in
passthrough mode when the users connect to the server. This feature is enabled
and disabled by the system procedure sp_autoconnect using the following
syntax:

sp_autoconnect server_name, true|false [,loginname]

Before using sp_autoconnect, add the server_name to sysservers by using
sp_addserver.

A user can request automatic connection to a server using sp_autoconnect,
but only the System Administrator can enable or disable automatic passthrough
connection for another user. Thus, only the System Administrator can specify
a third argument to this procedure.

If the second argument is true, the autoconnect feature is enabled for the
current user (or the user specified in the third argument). If the second
argument is false, the autoconnect feature is disabled.

Anytime a user connects to the server, that user’s autoconnect status in
syslogins is checked. If enabled, the server_name, also found in syslogins
(placed there by sp_autoconnect), is checked for validity. If the server is
valid, the user is automatically connected to that server, and a passthrough
status is established. Subsequent language statements received by the server
from this user are handled exactly as if the user explicitly entered the connect
command. This user then views the server very much like a passthrough
gateway to the remote server.

When an “autoconnected” user executes a disconnect, she or he is returned
normally to the server.

If the remote server cannot be reached, the user (unless the user is assigned the
“sa” role) will not be connected to the local Adaptive Server. A “login
failed” error message is returned.

sp_passthru
The sp_passthru procedure allows the user to pass a SQL command buffer to
a remote server. The syntax of the SQL statement(s) being passed is assumed
to be the syntax native to the class of server receiving the buffer; no translation
or interpretation is performed. Results from the remote server are optionally
placed in output parameters. The syntax for sp_passthru follows:

CHAPTER 2 Understanding Component Integration Services

21

sp_passthru server, command, errcode, errmsg, rowcount
 [, arg1, arg2, ... argn]

where:

• server is the name of the server that is to receive the SQL command buffer;
the datatype is varchar(30).

• command is the SQL command buffer; the datatype is varchar(255).

• errcode is the error code returned by the remote server; the datatype is int
output.

• errmsg is the error message returned by the remote server; the datatype is
varchar(255) output.

• rowcount is the number of rows affected by the last command in the
command buffer; the datatype is int output.

• arg1–argn are optional parameters. If provided, these output parameters
will receive the results from the last row returned by the last command in
the command buffer. The datatypes may vary. All must be output
parameters.

Example sp_passthru ORACLE, "select date from dual", @errcode
output, @errmsg output, @rowcount output, @oradate
output

This example returns the date from the Oracle server in the output parameter
@oradate. If an Oracle error occurs, the error code is placed in @errcode and
the corresponding message is placed in @errmsg. The @rowcount parameter
is set to 1.

For more information on sp_passthru and its return status, refer to the
Adaptive Server Reference Manual.

sp_remotesql

sp_remotesql allows you to pass native syntax to a remote server. The
procedure establishes a connection to a remote server, passes a query buffer,
and relays the results back to the client. The syntax for sp_remotesql is as
follows:

sp_remotesql server_name, query_buf1
[, query_buf2, ... , query_buf254]

where:

• server_name is the name of a server that has been defined using
sp_addserver.

Topics and Issues

22

• server_name is a varchar(30) field. If server_name is not defined or is not
available, the connection fails, and the procedure is aborted. This
parameter is required.

• query_buf1 is a query buffer of type char or varchar with a maximum
length of 255 bytes. This parameter is required.

Each additional buffer is char or varchar with a maximum length of 255 bytes.
If supplied, these optional arguments are concatenated with the contents of
query_buf1 into a single query buffer.

Example sp_remotesql freds_server, "select @@version"

In this example, the server passes the query buffer to freds_server, which
interprets the select @@version syntax and returns version information to the
client. The returned information is not interpreted by the server.

For more information on sp_remotesql and its return codes, refer to the
Adaptive Server Reference Manual.

Transaction Management
Transactions provide a way to group Transact-SQL statements so that they are
treated as a unit—either all work performed by the statements is committed to
the database, or none of it is.

For the most part, transaction management with Component Integration
Services is the same as transaction management in Adaptive Server, but there
are some differences. They are discussed in the following section.

Two-phase Commit

Two-phase commit transaction management is now available for remote data.
It is transparent to user-written applications.

This service tracks the state of a transaction in the local CIS-enabled server, as
well as in all remote servers participating in transactions. When a user
application commits a transaction, the commit is propagated to all participating
remote servers using the Adaptive Server Transaction Coordinator (ASTC).

The management of multi-site transactions is handled by the ASTC; CIS
registers new participating servers for each transaction, then turns over control
of the transaction coordination to ASTC.

CHAPTER 2 Understanding Component Integration Services

23

Two-phase commit works only with other Adaptive Server Enterprise 12.x
servers. For all other servers, both Sybase and non-Sybase, transaction
management will be handled as in the earlier releases: CIS makes a ‘best effort’
at managing the transaction, but cannot guarantee recovery.

Configure sybsystemdb for at least 10MB.

DDL is not supported within a distributed transaction. An attempt to do so
results in an exception.

Server Classes and ASTC

Internally, ASTC views a server as one of three types: DTM-
enabled, Pre-DTM, or No-DTM. These types map to the
three sets of callbacks used, and map to server classes as
indicated in the following table:

Table 2-1: ASTC and CIS Server Classes

Transaction processing through an Adaptive Server Enterprise release 12.x
server to pre-DTM and No-DTM remote servers should produce the same
output as transaction processing through a pre-12.x server to the same remote
servers.

Before starting distributed transactions, the local server must be named.

Strict DTM Enforcement

To ensure complete two-phase commit capability, ASTC uses the concept of
strict dtm enforcement. When enabled, strict dtm enforcement causes a
transaction to abort if an attempt is made to include a pre-DTM or no-DTM
server in the transaction.

ASTC Server Type CIS Server Class

DTM-enabled ASEnterprise (12.x or greater)

Pre-DTM ASEnterprise(pre-12.x

ASAnywhere

sql_server(10.x or greater)

sds

No-DTM ASIQ

sql_server (pre-system 10)

generic

db2

Topics and Issues

24

Enable xact coordination

ASTC uses the configuration option enable xact coordination. This option,
enabled by default, allows ASTC to manage all transactions involving remote
servers. You must enable CIS before xact coordination is enabled. While xact
coordination is enabled, CIS cannot be disabled. When xact coordination is
enabled, transactional_rpc’s are implicitly enabled.

Enable CIS

ASTC relies on CIS to handle all communication with remote servers. Since
ASTC is enabled by default (enable xact coordination), CIS is also enabled
by default.

CIS Set Commands

The behavior of the cis rpc handling configuration property and the set
transactional_rpc commands has changed with the introduction of ASTC. In
earlier releases, enabling cis rpc handling caused all RPCs to be routed
through CIS Client-Library connection. As a result, whenever cis rpc
handling was enabled, transactional_rpc behavior occurred whether or not it
had been specifically set.

With Adaptive Server Enterprise release 12.x, this behavior has changed. If cis
rpc handling is enabled and transactional_rpcs is off, RPCs within a
transaction are routed through the site handler. RPCs executed outside a
transaction are sent viathe CIS Client-Library connection. The following table
illustrates this change in functionality. As with previous releases, cis rpc
handling is disabled by default.

Table 2-2: CIS RPC Handling and Transactional RPCs

Attach and Detach

ASTC provides the capability to attach and detach from a transaction. This
allows a user to detach from a transaction that will later be attached to a TP
monitor for completion.

12.x Pre-12.x

CIS RPC handling OFF
Transactional RPCs OFF

Non-transactional Non-transactional

CIS RPC handling ON
Transactional RPCs OFF

Non-transactional Transactional

CIS RPC handling ON
Transactional RPCs ON

Transactional Transactional

CHAPTER 2 Understanding Component Integration Services

25

An exception results if you attempt to detach from a transaction that includes
pre-DTM and no-DTM servers.

Execute Immediate

The execute immediate feature is fully supported when using Component
Integration Services.

Pre-12.x Servers

Component Integration Services makes every effort to manage user
transactions for pre-12.x servers reliably. However, the different access
methods incorporated into the server allow varying degrees of support for this
capability. The general logic described below is employed by server classes
direct_connect (access_server), sql_server (when the server involved is
release 10.0 or later), and sds if the Specialty Data Store supports transaction
management.

The method for managing transactions involving remote servers uses a two-
phase commit protocol. Adaptive Server 11.5 implements a strategy that
ensures transaction integrity for most scenarios. However, there is still a
chance that a distributed unit of work will be left in an undetermined state.
Even though two-phase commit protocol is used, no recovery process is
included.

The general logic for managing a user transaction is as follows:

Component Integration Services prefaces work to a remote server with
a begin transaction notification. When the transaction is ready to be
committed, Component Integration Services sends a prepare
transaction notification to each remote server that has been part of the
transaction. The purpose of prepare transaction is to “ping” the remote server
to determine that the connection is still viable. If a prepare transaction request
fails, all remote servers are told to roll back the current transaction. If all
prepare transaction requests are successful, the server sends a commit
transaction request to each remote server involved with the transaction.

Any command preceded by begin transaction can begin a transaction. Other
commands are sent to a remote server to be executed as a single, remote unit of
work.

Topics and Issues

26

Transactional RPCs

The server allows RPCs to be included within the unit of work initiated by the
current transaction.

Before using transactional RPCs, issue the set transactional_rpc on or set
cis_rpc_handling on command.

Assuming that the remote server can support the inclusion of RPCs within
transactions, the following syntax shows how this capability might be used:

begin transaction
 insert into t1 values (1)
 update t2 set c1 = 10
 execute @status = RMTSERVER.pubs2.dbo.myproc
 if @status = 1
 commit transction
 else
 rollback transaction

In this example, the work performed by the procedure myproc in server
RMTSERVER is included in the unit of work that began with the begin
transaction command. This example requires that the remote procedure
myproc return a status of “1” for success. The application controls whether the
work is committed or rolled back as a complete unit.

The server that is to receive the RPC must allow RPCs to be included in the
same transactional context as Data Manipulation Language (DML) commands
(select, insert, delete, update). This is true for Adaptive Server and is
expected to be true for most DirectConnect products being released by Sybase.
However, some database management systems may not support this capability.

Restrictions on Transaction Management

Restrictions on transaction management are as follows:

• Savepoints are not propagated to remote servers.

• If nested begin transaction and commit transaction statements are
included in a transaction that involves remote servers, only the outermost
set of statements is processed. The innermost set, containing the begin
transaction and commit transaction statements, is not transmitted to
remote servers.

CHAPTER 2 Understanding Component Integration Services

27

• The transaction model described in “Pre-12.x Servers” on page 25 is not
supported in server class generic or server class db2. It is also not
supported in server class sql_server when the remote server is a pre-
release 10.0 SQL Server or a Microsoft SQL Server. In these cases, the
transactions are committed after each statement is completed.

Remote Procedures as Proxy Tables
An optional clause may be added to the create existing table statement to
indicate the remote object is actually a stored (or other) procedure instead of a
table. Without this clause, the remote object is assumed to be a table or view:

create existing table t1
(

column_1int,
column_2int

)
EXTERNAL PROCEDURE AT "SERVER_A.mydb.dbo.t1"

In the case where the remote object is type procedure, several processing
differences will occur:

• No indexes will be created for objects of this type.

• A column list must be provided which matches the description
of the remote procedure’s result set. This column list is the
responsibility of the user, and no verification of its accuracy is
provided.

• Column names beginning with underscore (‘_’) can be used to
specify parameters, which are not part of the remote
procedure’s result set. These columns are referred to as
parameter columns. For example:

create existing table rpc1
(

a int,
b int,
c int,
_p1 int null,
_p2 int null

)
external procedure
at “SYBASE.sybsystemprocs.dbo.myproc”

select a, b, c from t1
where _p1 = 10 and _p2 = 20

Topics and Issues

28

• In this example, the parameter columns _p1 and _p2 are not expected in
the result set, but can be referenced in the query. CIS will pass the search
arguments to the remote procedure via parameters, using the names @p1
and @p2.

• If a parameter column is included in the select list, its value will be
equivalent to the values specified for it in the where clause, if it was
passed to the remote procedure as a parameter. If the parameter column did
not appear in the where clause, or was not able to be passed to the remote
procedure as a parameter, but was included in the select list, its value
would be NULL.

• A parameter column can be passed to the remote procedure as a parameter
if it is what the ASE query processor considers to be a searchable
argument, or SARG. It is generally a SARG if it is not included in any or
predicates. For example, the following query would prevent the parameter
columns from being used as parameters:

select a, b, c from t1
where _p1 = 10 OR _p2 = 20

• Rules exist for the definition of parameter columns in the create existing
table statement:

• parameter columns must allow NULL.

• parameter columns cannot precede normal, result columns (i.e. they
must appear at the end of the column list).

Allowing the definition of remote procedures as local tables gives CIS the
ability to treat the result set of a remote procedure as a ‘virtual table,’
which can be sorted, joined with other tables, or inserted into another table
via insert/select syntax. However, tables of this type are considered read
only:

• You cannot issue a delete, update or insert command against a table
of type procedure;

• You cannot issue a create index, truncate table or alter table
command against tables of this type.

Component Integration Services users can map remote or external
objects of the type rpc to local proxy tables. If a table is created in this way, it
can be referenced only by the select and drop commands. The commands
insert, delete, and update generate error messages, since the table is assumed
to be read-only. Proxy definitions should only be created for procedures which
return data.

CHAPTER 2 Understanding Component Integration Services

29

If an object of the type rpc has been defined within the server, a query is not
issued to the remote server on which the object resides. Instead, the server
issues an RPC and treats the results from the RPC as a read-only table.

Examples create existing table rtable
 (col1 int,
 col2 datetime,
 col3 varchar(30)
)
external procedure at “RMTSERVER...myproc “

select * from rtable

When this query is issued, the server sends the RPC named myproc to server
RMTSERVER. Row results are treated like the results from any other table;
they can be sorted, joined with other tables, grouped, inserted into another
table, and so forth.

RPC parameters should represent arguments that restrict the result set. If the
RPC is issued without parameters, the entire result set of the object is returned.
If the RPC is issued with parameters, each parameter further limits the result
set. For example, the following query:

select * from rtable where col1 = 10

results in a single parameter, named @col1, that is sent along with the RPC. Its
value is 10.

Component Integration Services attempts to pass as many of the search
arguments as possible to the remote server, but depending on the SQL
statement being executed, Component Integration Services might
perform the result set calculation itself. Each parameter represents a search for
an exact match, for example, the = operator.

The following are rules which define the parameters sent to the RPC. If an RPC
will be used as a Component Integration Services object, these rules
should be kept in mind during development.

• Component Integration Services sends = operators in the where
clause as parameters. For example, the query:

 select * from rpc1 where a = 3 and b = 2

results in Component Integration Services sending two parameters.
Parameter a has a value of 3 and parameter b has a value of 2. The RPC is
expected to return only result rows in which column a has a value of 3 and
column b has a value of 2.

Topics and Issues

30

• Component Integration Services will not send any parameters for a
where clause, or portion of a where clause, if there is not an exact search
condition. For example:

select * from rpc1 where a = 3 or b = 2

Component Integration Services will not send parameters for a or b
because of the or clause.

Another example:

select * from rpc1 where a = 2 and b < 3

Component Integration Services will not send parameters because
there is nothing in the where clause representing an exact search
condition. Component Integration Services will perform the result
set calculation locally.

text and image Datatypes
The text datatype is used to store printable character data which can be more
than 255 bytes. The image datatype is used to store more than 255 bytes of
hexadecimal-encoded binary data. The maximum length for text and image
data is defined by the server class of the remote server to which the column is
mapped:

• For servers of class sql_server, the maximum is 2147MB.

• For Open Server applications of class direct_connect (access_server) the
maximum byte count is defined by the functionality of the DirectConnect
server.

Restrictions on text and image Columns

text and image columns cannot be used:

• As parameters to stored procedures. text or image values cannot be passed
to stored procedures.

• As local variables.

• In order by, compute, or group by clauses.

• In indexes.

• In subqueries.

• In where clauses, except with the keyword like.

CHAPTER 2 Understanding Component Integration Services

31

• In joins.

Limits of @@textsize
select statements return text and image data up to the limit specified in the
global variable @@textsize. The set textsize command is used to change this
limit. The initial value of @@textsize is 32K; the maximum value for
@@textsize is 2147MB.

Odd Bytes Padded

image values of less than 255 bytes that have an odd number of bytes are
padded with a leading zero (an insert of "0xaaabb" becomes "0x0aaabb"). It is
an error to insert an image value of more than 255 bytes if the value has an odd
number of bytes.

Converting text and image Datatypes

You can explicitly convert text values to char or varchar and image values to
binary or varbinary with the convert function, but you are limited to the
maximum length of the character and binary datatypes, 255 bytes. If you do not
specify the length, the converted value has a default length of 30 bytes. Implicit
conversion is not supported.

Pattern Matching with text Data

Use the patindex function to search for the starting position of the first
occurrence of a specified pattern in a text, varchar, or char column. The %
wildcard character must precede and follow the pattern (except when you are
searching for the first or last character).

You can use the like keyword to search for a particular pattern. The following
example selects each text data value from the blurb column of the texttest table
that contains the pattern “Straight Talk%”:

select blurb from texttest
 where blurb like "Straight Talk%"

Topics and Issues

32

Entering text and image values

The DB-Library™ functions dbwritetext and dbmoretext and the Client-
Library function ct_send_data are the most efficient ways to enter text and
image values.

When inserting text or image values using the insert command, the length of
the data is limited to 450 bytes.

readtext using bytes
If you use the readtext using bytes command on a text column, and the
combination of size and offset result in the transmission of a partial character,
then errors result.

text and image with bulk copy
When you use bulk copy to copy text and image values to a remote server, the
server must store the values in data pages before sending them to the remote
server. Once the values have been issued to the remote server, the data pages
are released. Data pages are allocated and released row by row. Users must be
aware of this for the following reasons:

• The overhead of allocating and releasing data pages impacts performance.

• The data pages are allocated in the database where the table resides, so the
database must be large enough to accommodate enough data pages for the
largest text and image values that exist for any given row.

Error Logging

Processing of text and image data (with remote servers only) can be logged by
using trace flag 11207.

text and image Data with Server Class sql_server
• A pointer in a text or image column is assigned when the column is

initialized. Before you can enter text or image data into a column, the
column must be initialized. This causes a 2K page to be allocated on the
remote or Adaptive Server. To initialize text or image columns, use the
update with a NULL or a non-null insert command. See writetext for
more information.

CHAPTER 2 Understanding Component Integration Services

33

• Before you use writetext to enter text data or readtext to read it, the text
column must be initialized. Use update or insert non-null data to initialize
the text column, and then use writetext and readtext.

• Using update to replace existing text and image data with NULL, reclaims
all of the allocated data pages, except the first page, in the remote server.

• writetext, select into, DB-Library functions, or Client-Library functions
must be used to enter text or image values that are larger than 450 bytes.

• insert select cannot be used to insert text or image values.

• readtext is the most efficient way to access text and image data.

text and image Data with Server Class direct_connect (access_server)
• Specific DirectConnect servers support text and image data to varying

degrees. Refer to the DirectConnect documentation for information on text
and image support.

• The server uses the length defined in the global variable @@textsize for
the column length. Before issuing create table, the client application
should set @@textsize to the required length by invoking the set textsize
command.

• For DirectConnect servers that support text and image datatypes but do not
support text pointers, the following restrictions apply:

• The writetext command is not supported.

• The readtext command is not supported.

• Client-Library functions that use text pointers are not supported.

• DB-Library functions that use text pointers are not supported.

• For DirectConnect servers that support text and image datatypesbut do not
support text pointers, some additional processing is performed to allow the
following functions to be used:

• patindex

• char_length

• datalength

If text pointers are supported, the server performs these functions by
issuing an RPC to the DirectConnect server.

Topics and Issues

34

• For DirectConnect servers that do not support text pointers, the server
stores data in the sysattributes system table. Data pages are preallocated
on a per column per row basis. The column size is determined by the
@@textsize global variable. If this value is not sufficient an error is
returned.

• Specific DirectConnect servers may or may not support pattern matching
against the text datatype. If a DirectConnect server does not support this
pattern matching, the server copies the text value to internal data pages and
performs the pattern matching internally. The best performance is seen
when pattern matching is performed by the DirectConnect server.

• writetext, select into, or insert...select must be used to enter text or
image values that exceed 450 bytes.

• select into and insert...select can be used to insert text or image values,
but the table must have a unique index.

db2 Server Issues

text and image datatypes for a server of class db2 are not supported. If you need
text and image datatypes, you must use a DirectConnect server.

CHAPTER 2 Understanding Component Integration Services

35

Internal Operations
This section describes the underlying operations on remote servers performed
by Component Integration Services on behalf of client applications.

Connection Management
When connecting to a remote server on behalf of a client, the server uses
Client-Library functions. Once the first connection to a remote server is
established for a given client, that connection remains open until the client
disconnects from Component Integration Services.

For servers of class direct_connect (access_server) and sql_server (release
10.0 and later), only one connection is established to that server for each client
that requires access to that server. All interaction with these servers is done
within this single connection context.

However, for pre-release 10.0 SQL Server, and servers of class db2 and
generic, it may be necessary to establish more than one connection to that
server in order to process a single client request. In this case, multiple
connections are established as needed, and all but one are closed when the
Transact-SQL command requiring them has completed.

Query Processing
The query processing steps taken when Component Integration Services
is enabled are similar to the steps taken by Adaptive Server, except for the
following:

• If a client connection is made in passthrough mode, the Adaptive Server
query processing is bypassed and the SQL text is forwarded to the remote
server for execution.

• When select, insert, delete or update statements are submitted to the
server for execution, additional steps may be taken by Component
Integration Services to improve the query’s performance, if local
proxy tables are referenced.

The query processing steps are shown in Figure 2-1.

An overview of these steps follows.

Internal Operations

36

Figure 2-1: Query processing steps

Query Parsing

The SQL parser checks the syntax of incoming SQL statements, and raises an
error if the SQL being submitted for execution is not recognized by the
Transact-SQL parser.

Query Normalization

During query normalization, each object referenced in the SQL statement is
validated. Query normalization verifies the objects referenced in the statement
exist, and the datatypes are compatible with values in the statement.

Example select * from t1 where c1 = 10

parse

normalize

preprocess

?
Adaptive Server

generation
Component Integration
Services plan generation

yes no

Component Integration

 location optimizer

Can Component
Integration Services
handle the entire

execute

Component Integration
Services access methods

 Server
access methods

optimization/plan

Shaded boxes indicate steps taken by Component Integration Services.

statement?
Services remote

CHAPTER 2 Understanding Component Integration Services

37

The query normalization stage verifies that table t1 with a column named c1
exists in the system catalogs. It also verifies that the datatype of column c1 is
compatible with the value 10. If the column’s datatype is datetime, for
example, this statement is rejected.

Query Preprocessing

Query preprocessing prepares the query for optimization. It may change the
representation of a statement such that the SQL statement Component
Integration Services generates will be syntactically different from the original
statement.

Preprocessing performs view expansion, so that a query can operate on tables
referenced by the view. It also takes steps such as reordering expressions and
transforming subqueries to improve processing efficiency. For example,
subquery transformation may convert some subqueries into joins.

Decision Point

After preprocessing, a decision is made as to whether Component Integration
Services or the standard Adaptive Server query optimizer will handle
optimization.

Component Integration Services will handle optimization (using a
feature known as quickpass mode) when:

• Every table represented in the SQL statement resides within a single
remote server.

• The remote server is capable of processing all the syntax represented by
the statement.

Component Integration Services determines the query processing
capabilities of the remote server by its server class. Servers with server
class sql_server, db2, or generic have implied capabilities. For example,
Component Integration Services assumes that any server configured
as server class sql_server is capable of processing all Transact-SQL
syntax.

For remote servers with server class access_server or direct_connect,
Component Integration Services issues an RPC to ask the remote
server for its capabilities the first time a connection is made to the server.
Based on the server’s response to the RPC, Component Integration
Services determines the syntax of the SQL it will forward to the remote
server.

Internal Operations

38

• The following is true of the SQL statement:

• It is a select, insert, delete, or update statement

• If it is an insert, update, or delete statement, there are no identity or
timestamp columns, or referential constraints

• It contains no text or image columns

• It contains no compute by clauses

• It contains no for browse clauses

• It is not a select...into statement

• It is not a cursor-related statement (for example, fetch, declare, open,
close, deallocate, update or delete statements that include where
current of cursor)

If the above conditions are not met, quickpass mode cannot be used, and the
standard Adaptive Server query optimizer handles optimization.

Component Integration Services Plan Generation

If quickpass mode can be used, Component Integration Services produces a
simplified query plan. When statements contain proxy tables, they are executed
more quickly when processed by the remote server than when processed
through the Adaptive Server plan generation phase.

Adaptive Server Optimization and Plan Generation

Adaptive Server optimization and plan generation evaluates the optimal path
for executing a query and produces a query plan that tells the Adaptive Server
how to execute the query.

If the update statistics command has been run for the tables in the query, the
optimizer has sufficient data on which to base decisions regarding join order.
If the update statistics command has not been run, the Adaptive Server
defaults apply.

For more information on Adaptive Server optimization, refer to Chapter 7,
“The Adaptive Server Query Optimizer,” in the Performance and Tuning
Guide.

CHAPTER 2 Understanding Component Integration Services

39

Component Integration Services Remote Location Optimizer

Adaptive Server generates a query plan containing the optimal join order
for a multitable query without regard to the storage location of each table. If
remote tables are represented in the query, Component Integration
Services, which takes the storage location into account, performs additional
optimization for the following conditions:

• Join processing

• Aggregate processing

In order to make intelligent evaluations of a query to improve performance in
the above areas, statistics are required. These are obtained by executing the
command update statistics for a specific table.

update statistics

When updating statistics on a remote table, Component Integration
Services intercepts the request and provides meaningful statistics for the
remote table and all of its indexes (if any). The result of executing an update
statistics command is a distribution statistics page stored in the database, for
each index.

In Adaptive Server, data used to create this distribution page comes from local
index pages. When you are updating statistics on a remote table, the data used
to create the distribution statistics page comes from the keys used to make up
the index on the remote table.

The server issues a query to the remote server to obtain all columns making up
the index, sorted according to position within the index. For example, if table1
has an index made up of two columns, col1 and col2, then the query to that
server is sent as follows when update statistics is executed:

select col1, col2 from table1 order by col1, col2

The results are then used to construct a distribution page in the format needed
by the optimizer.

The detailed distribution statistics are used to determine optimal join order.
This gives the server the ability to generate optimal queries against remote
databases that may not support cost-based query optimization.

Internal Operations

40

On large tables, update statistics can take a long time. To speed up the
process, turn on trace flag 11209 before executing update statistics. This trace
flag instructs update statistics to obtain only row counts on remote tables. The
Adaptive Server query optimizer uses the row count information to make
assumptions about the selectivity of a particular index. While these
assumptions are not as complete as the full distribution statistics, they provide
the minimal information needed to handle query optimization.

Join Processing

Component Integration Services remote location optimizer isolates join
conditions represented in the query plan. For each remote server that is
represented by two or more tables in the join, Component Integration Services
modifies the query plan to appear as though a single virtual table is being
processed for that server. Component Integration Services then forwards the
join conditions to the remote server during query execution.

For example, if a query involves four tables, two that are located on the remote
server SERVERA and two that are located on the remote server SERVERB,
Component Integration Services processes the query as though it were a
two-way join. The following query:

select * from A1, A2, B1, B2
 where A1.id = A2.id and A2.id = B1.id
 and B1.id = B2 id

gets converted to:

select * from V1, V2 where V1.id = V2.id

V1 is the virtual table representing the results of the join between A1 and A2
(processed by SERVERA), and V2 is the virtual table representing the results
of the join between B1 and B2 (processed by SERVERB). Since the

Adaptive Server uses nested iteration (looping) to process inner tables of a
join, the query is processed as follows:

open cursor on V1
 fetch V1 row
 for each row in V1
 open a cursor on V2
 fetch V2
 route results V1, V2 to client
 close cursor on V2

CHAPTER 2 Understanding Component Integration Services

41

Aggregate Processing

Component Integration Services optimizes queries containing
ungrouped aggregate functions (min, max, sum, and count) by passing the
aggregate to the remote server if the remote server is capable of performing the
function.

For example, consider the following query on the remote table A1:

select count(*) from A1 where id > 100

The count(*) aggregate is forwarded to the remote server that owns A1.

Query Execution

The query execution stage receives a query plan, generated either as a result of
an adhoc query or a stored procedure, and executes each step of the plan,
according to the information stored in the plan. Query plan structures are
tagged with information that indicates which access method is to be invoked.
If a table is local, then normal Adaptive Server access methods used to process
a query are activated as required by the plan execution logic. If the table is
remote, then Component Integration Services access methods are invoked to
process each table (or virtual table) represented in the query.

Component Integration Services Access Methods

The Component Integration Services access methods interact with the remote
servers that contain objects represented in a query. In Adaptive Server 11.5, all
interaction is done through Client-Library.

When an entire statement can be forwarded to the remote server, the statement
is taken from the query plan. After any parameters have been substituted into
the text of the statement, the entire statement is forwarded to the appropriate
remote server.

When the Adaptive Server optimizer and plan generator are involved, the
statement or fragment of a statement that is to be executed remotely is
constructed from data structures contained within the query plan. The
statement or fragment of a statement is then forwarded to the appropriate
remote server.

The results from the remote servers are then converted into the necessary
internal data types, and processed as if they were derived from local tables.

Internal Operations

42

When an order by is processed by the remote server, the results may be
different from what Adaptive Server would return for the same query,
because the sort order is determined by the remote server, not by Adaptive
Server.

Query Plan Execution
Any command that could affect a table is checked by the server to determine
whether the object has a local or remote storage location. If the storage location
is remote, then the appropriate access method is invoked when the query plan
is executed in order to apply the requested operation to the remote objects. The
following commands are affected if they operate on objects that are mapped to
a remote storage location:

• alter table

• begin transaction

• commit

• create index

• create table

• create existing table

• deallocate table

• declare cursor

• delete

• drop table

• drop index

• execute

• fetch

• insert

• open

• prepare transaction

• readtext

• rollback

• select

CHAPTER 2 Understanding Component Integration Services

43

• set

• setuser

• truncate table

• update

• update statistics

• writetext

create table Command

When the server receives a create table command, the command is interpreted
as a request for new table creation. The server invokes the access method
appropriate for the server class of the table that is to be created, if it is remote,
and then creates the table. If this command is successful, system catalogs are
updated, and the object appears to clients as a local table in the database in
which it was created.

The create table command is reconstructed in a syntax that is appropriate for
the server class. For example, if the server class is db2, then the command is
reconstructed using DB2 syntax before being passed to the remote server.
Datatype conversions are made for datatypes that are unique to the Adaptive
Server environment.

Datatype conversion charts for each server class are provided in Chapter 4.
Some server classes have restrictions on what datatypes can and cannot be
supported. These are also described in Chapter 4, “Server Classes.”

The create table command is passed to remote servers as a language request.

create existing table Command

When a create existing table command is received, it is interpreted as a
request to import metadata from the remote or external location of the object
for updating system catalogs. Importing this metadata is performed by means
of three RPCs sent to the remote server with which the object has been
associated:

• sp_tables – verifies that the remote object actually exists.

• sp_columns – obtains column attributes of the remote object for
comparison with those defined in the create existing table command.

Internal Operations

44

• sp_statistics – obtains index information in order to update the local
system table, sysindexes.

alter table Command

When the server receives the alter table command, it passes the command to
an appropriate access method if:

• The object on which the command is to operate has been associated with
a remote or external storage location.

• The command consists of an add column request. Requests to add or drop
constraints are not passed to the access methods; instead, they are handled
locally.

The alter table command is passed to remote servers as a language request.

create index Command

When the server receives the create index command, it passes the command
to an appropriate access method, if the object on which the command is to
operate has been associated with a remote or external storage location.

The command is reconstructed using a syntax appropriate for the class and is
passed to the remote server for execution.

The create index command is passed to remote servers as a language request.

drop table Command

When the server receives the drop table command for a remote table, a check
is made to determine whether the table to be dropped has been created with the
existing option. If so, references to the object within the system tables are
removed, and the operation is complete.

If the table was not created with the existing option, the command is passed to
an appropriate access method, if the object on which the command is to operate
has been associated with a remote or external storage location.

The drop table command is reconstructed using a syntax appropriate for the
class and is passed to the remote server for execution.

This command is passed to remote servers as a language request.

In all cases, references to the object from within the system catalogs are
removed.

CHAPTER 2 Understanding Component Integration Services

45

drop index Command

When the server receives the drop index command, it passes the command to
an appropriate access method, if the object on which the command is to operate
has been associated with a remote or external storage location.

The drop index command is reconstructed using a syntax appropriate for the
class and is passed to the remote server for execution.

This command is passed to remote servers as a language request.

truncate table Command

When the server receives the truncate table command, it passes the command
to an appropriate access method, if the object on which the command is to
operate has been associated with a remote or external storage location.

The command is reconstructed using a syntax appropriate for the class and is
passed to the remote server for execution. Since this syntax is unique to the
Adaptive Server environment, a server of class db2 would receive a delete
command with no qualifying where clause:

delete from t1

The truncate table command is passed to remote servers as a language request.

Triggers
Component Integration Services allows triggers on proxy tables;
however their usefulness is limited. It is possible to create a trigger on a proxy
table and the trigger will be invoked just as it would be for a normal Adaptive
Server table. However, before and after image data is not written to the log for
proxy tables because the insert, update and delete commands are passed to
the remote server. The inserted or deleted tables, which are actually views into
the log, contain no data for proxy tables. Users cannot examine the rows being
inserted, deleted, or updated, so a trigger with a proxy table has limited value.

Internal Operations

46

Referential Integrity
You can use Component Integration Services to maintain referential
integrity between remote tables. See the section on constraints in the Transact-
SQL User’s Guide. During update, insert, and delete operations,
Component Integration Services checks the referenced table. If the
check fails, the transaction is rolled back.

Security Issues
When establishing a connection to a remote Adaptive Server, Client-
Library functions are used instead of a site handler when either
cis_rpc_handling or set transactional_rpc is on. This method of establishing
connections prevents the remote server from distinguishing these connections
from those of other clients. Thus, any remote server security configured on the
remote server to allow or disallow connections from a given server does not
take effect.

Another Adaptive Server with Component Integration Services
enabled cannot use trusted mode for remote server connections. This forces the
Adaptive Server to be configured with all possible user accounts if it is
going to be used with Component Integration Services.

Passwords are stored internally in encrypted form.

Trusted Mode
Trusted mode can be used only between two servers with site handlers. When
Component Integration Services establishes a Client-Library connection
to a remote server, trusted mode cannot be used. If a trusted mode connection
is needed, use set cis_rpc_handling off.

For more information about trusted mode, see Chapter 8, “Managing Remote
Servers,” in the Security Administration Guide.

CHAPTER 2 Understanding Component Integration Services

47

Adaptive Server Features and Remote Data Access
The follow sections present compatibility considerations when using Adaptive
Server for remote data access with Component Integration Services.

ANSI Joins
ANSI joins are fully supported for remote data access. If a
query cannot be translated, CIS will compensate
functionally. The following rules apply to ANSI joins with
remote data:

When the remote server supports only ANSI joins

All queries containing outer joins are converted to ANSI joins.

When the remote server supports both ANSI joins and T-SQL joins

Queries containing ANSI join syntax are sent using ANSI join syntax. Queries
containing T-SQL outer join syntax are sent with T-SQL syntax.

When the remote server supports only DB2-ANSI

The query to the remote server will be sent in ANSI if all tables in the from
clause participate in an ANSI join.

• Not sent:

select * from T1 left join T2 on
T1.a = T2.a, T3

• Sent

select * from T1 Left Join T2 on
T1.a = T2.a Left Join T3 on
T3.a = T2.a

When an ANSI query is received for a server that does not support ANSI syntax

The query will be converted to T-SQL if possible.

Adaptive Server Features and Remote Data Access

48

50-Table Join Limit
The 50-table join limit is fully functional with remote servers that support it.

CIS first checks the capabilities of remote servers. If the 50-table join is
supported by the remote server, the requested query is passed onto the remove
server.

If the remote server does not support a 50-table join, a query is sent that
references 16 tables or less at a time.

Remote Server Logins
To fully support remote logins, Client-Library provides new connection
properties which enable CIS to request a server connection. This connection is
recognized at the receiving server as a server connection (as opposed to an
ordinary client connection), allowing the remote server to validate the
connection through the use of sysremotelogins as if the connection were made
by a site handler.

This feature is not enabled automatically. Instead, the SSO or DBA will have
to request it through the use of the stored procedure sp_serveroption:

exec sp_serveroption <server_name>,
‘server login’, true | false

You cannot change the server login property if the current server’s
@@servername global variable is currently NULL.

If the server login option is enabled (set to TRUE), then CIS uses Client-
Library connection properties to establish connections to the specified server:

Remote passwords specified by the client application are passed unchanged to
the remote server. The use of and rules associated with remote passwords in
server logins are identical to those associated with site handler connections.

These connection properties are only established if:

• The server option ‘server login’ is set to TRUE

• The remote server is configured with server class ASEnterprise

• There is a local server name defined for the CIS-enabled server (i.e. the
query select @@servername returns something other than NULL)

CHAPTER 2 Understanding Component Integration Services

49

Adaptive Server Features Not Supported by CIS

Parallel Processing
Parallel processing is disabled while Component Integration Services accesses
remote tables.

External Security
Clients connecting to Adaptive Server can use external security features when
Component Integration Services is enabled. However, Component
Integration Services does not incorporate security features when
communicating with remote servers. Clients using external security features
should use sp_addexternlogin to access remote servers.

Adaptive Server Features Not Supported by CIS

50

51

C H A P T E R 3 Using Component Integration
Services

This chapter provides information on defining objects, configuring,
tuning, and using Component Integration Services.

• Getting Started with Component Integration Services

• Configuration and Tuning

Name Page

Getting Started with Component Integration Services 52

Configuration and Tuning 60

RPC Handling and Component Integration Services 67

dbcc Commands 74

Shared Memory Requirements 78

Backing Up Your System 80

Getting Started with Component Integration Services

52

Getting Started with Component Integration Services
This section is intended to help first-time users get Component Integration
Services running quickly. It provides a step-by-step guide to configuring the
server to access remote data sources. It includes instructions for:

• Adding a remote server

• Mapping remote objects to local proxy tables

• Performing joins between remote tables

Routine system administration tasks such as starting and stopping Adaptive
Server, creating logins, creating groups, adding users, granting permissions,
and password administration are explained in the Adaptive Server
documentation.

Adding a Remote Server
You can use the server to access data on remote servers. Before you can do this,
you must configure Component Integration Services.

Follow these steps to configure the server to access remote data:

Overview of the Procedure

1 Add the remote server to the interfaces file, using the dsedit or dscp
utility.

2 Add the name, server class, and network name of the remote server to
system tables, using the system procedure sp_addserver.

3 Assign an alternate login name and password, using the system procedure
sp_addexternlogin. This step is optional.

Step 1: Add the Remote Server to the Interfaces File

Use the dsedit or dscp utility to edit the interfaces file located in the $SYBASE
directory on the UNIX platform:

• In UNIX, the interfaces file is called interfaces.

• In Windows NT, the interfaces file is called sql.ini.

For a complete discussion of the interfaces file, see the Adaptive Server
configuration guide for your platform.

CHAPTER 3 Using Component Integration Services

53

Step 2: Create Server Entries in System Tables

Use the system procedure sp_addserver to add entries to the sysservers table.
sp_addserver creates entries for the local server and an entry for each remote
server that is to be called. The sp_addserver syntax is:

sp_addserver server_name [,server_class [,network_name]]

where:

• server_name is the name used to identify the server. It must be unique.

• server_class is one of the supported server classes. Server classes are
defined in Chapter 4, “Server Classes.” The default value is sql_server. If
server_class is set to local, network_name is ignored.

• network_name is the server name in the interfaces file. This name may be
the same as server_name, or it may differ. The network_name is
sometimes referred to as the physical name.

Example The following examples create entries for the local server named DOCS and
for the remote server CTOSDEMO with server class sql_server.

sp_addserver DOCS, local
sp_addserver CTOSDEMO, sql_server, CTOSDEMO

Step 3: Add an Alternate Login and Password

Use the system procedure sp_addexternlogin to assign an alternate login
name and password to be used when communicating with a remote server. This
step is optional. The syntax for sp_addexternlogin is:

sp_addexternlogin remote_server, login_name, remote_name [,
remote_password]

where:

• remote_server is the name of the remote server. The remote_server must
be known to the local server by an entry in the master.dbo.sysservers table.

• login_name is an account known to the local server. login_name must be
represented by an entry in the master.dbo.syslogins table. The “sa”
account, the “sso” account, and the login_name account are the only users
authorized to modify remote access for a given local user.

• remote_name is an account known to the remote_server and must be a
valid account on the node where the remote_server runs. This is the
account used for logging into the remote_server.

• remote_password is the password for remote_name.

Getting Started with Component Integration Services

54

Examples sp_addexternlogin FRED, sa, system, sys_pass

Allows the local server to gain access to remote server FRED using the remote
name “system” and the remote password “sys_pass” on behalf of user “sa”.

sp_addexternlogin OMNI1012, bobj, jordan, hitchpost

Tells the local server that when the login name “bobj” logs in, access to the
remote server OMNI1012 is by the remote name “jordan” and the remote
password “hitchpost”. Only the “bobj” account, the “sa” account, and the “sso”
account have the authority to add or modify a remote login for the login name
“bobj”.

Verifying Connectivity

Use the connect to server_name command to verify that the configuration is
correct. connect to requires that “sa” explicitly grant connect authority to
users other than “sa.” The connect to command establishes a passthrough
mode connection to the remote server. This passthrough mode remains in effect
until you issue a disconnect command.

Mapping Remote Objects to Local Proxy Tables
Location transparency of remote data is enabled through remote object
mapping.

Once a remote server has been properly configured, users can reference the
remote objects that have been defined. Users can create new tables on remote
servers and can define the schema for an existing table on a remote server.

Overview of the Procedure

1 Use the stored procedure sp_addobjectdef to define the storage location
of a remote object.

2 Use the create table or the create existing table command to map the
remote table schema to the server.

Step 1: Define the Storage Location of a Remote Object

The at pathname syntax used with create existing table command is the
preferred method for defining the storage location of remote objects. The
following method using sp_addobjectdef is also supported.

CHAPTER 3 Using Component Integration Services

55

The stored procedure sp_addobjectdef defines the storage location of a
remote object. This procedure allows the user to associate a remote object
name with a local table name. The remote object may or may not exist before
the storage location is defined. The syntax for sp_addobjectdef is:

sp_addobjectdef object_name, "object_loc" [,"object_type"]

where:

• object_name is the local proxy table name to be used by subsequent
statements. object_name takes the form:

dbname.owner.object

where dbname and owner are optional and represent the local database and
owner name. If not present, the object is defined in the current database
owned by the current owner. If either dbname or owner is specified, the
entire object_name must be enclosed in quotes. If only dbname is present,
a placeholder is required for owner.

• object_loc is the storage location of the remote object. It takes the form:

server_name.dbname.owner.object;aux1.aux2

where:

• server_name is the name of the server that contains this remote object
(required.)

• dbname is the name of the database managed by the remote server that
contains this object (optional). If the server is class db2, this is the
location_name portion of a DB2 table name.

• owner is the name of the remote server user that owns the remote
object (optional). If the server is class db2, this is the DB2
authorization ID.

• object is the name of the remote table, view, or rpc.

• aux1.aux2 is a string of characters that is passed to the remote server
during a create table or create index command as the segment name;
the meaning of this string is dependent upon the class of the server
that receives it. If the server is class db2, aux1 is the DB2 database in
which to place the table, and aux2 is the DB2 tablespace in which to
place the table. aux1.aux2 is optional.

• object_type is the type of remote object. It can be a table, view, or rpc. This
parameter is optional; the default is table.

When present, the object_type option must be enclosed in quotes.

Getting Started with Component Integration Services

56

Example To map the proxy table authors to the remote authors table, use the following
syntax for the database shown in Figure 3-1:

sp_addobjectdef authors, "ORACLEDC...authors", "table"

Figure 3-1: Using sp_addobjectdef to map a remote table to a proxy
table

Step 2: Map Remote Table Schema to Adaptive Server

Once you have defined the storage location, you can create the table as a new
object or as an existing object. If the table does not exist at the remote storage
location, use the create table syntax. If it already exists, use the create
existing table syntax. If the object type is rpc, only the create existing table
syntax is allowed.

When a create existing table statement is received and the object type is either
table or view, the existence of the remote object is checked using the catalog
stored procedure sp_tables.

If the object exists, column and index attributes are obtained and compared
with those defined for the object in the create existing table command. The
server checks the column name, type, length and null property and adds index
attributes to the sysindexes system table.

Once the object has been created, either as a new or existing object, users can
query the remote object by using the local proxy name.

See create table and create index in the Adaptive Server Reference Manual.

Join Between Two Remote Tables
With Component Integration Services, you can perform joins across remote
tables. The following steps show how to join two Adaptive Server tables:

 ORACLEDC server

Tables

MYCIS Server

Tables

authors
proxy table authors table

Proxy

CHAPTER 3 Using Component Integration Services

57

Overview of the Procedure

1 Add the remote servers to the interfaces file.

2 Define each remote server using sp_addserver.

3 Map the remote tables to the server using create existing table.

4 Perform the join using select.

Step 1: Add the Remote Servers to the Interfaces File

Edit the interfaces file using the dsedit utility.

Step 2: Define the Remote Servers

Use the system procedure sp_addserver to add entries to the sysservers
system table. On the server originating the call, there must be an entry for each
remote server that is to be called. The sp_addserver syntax is:

sp_addserver server_name [,server_class] [,network_name]

where:

• server_name is the name used to identify the server. It must be unique.

• server_class is one of the supported server classes, defined in Chapter 4,
“Server Classes.” The default value is sql_server. If the value is local,
network_name is ignored.

• network_name is the server name in the interfaces file. This name may be
the same as the server_name specification, or it may be different. If
network_name is not provided, the default value is the server_name.

Example The following examples create entries for the local server named DOCS and
for the remote server SYBASE of class sql_server.

sp_addserver DOCS, local
sp_addserver CTOSDEMO, sql_server, SYBASE

Step 4: Map the Remote Tables to Adaptive Server

The create existing table command enables the definition of existing (proxy)
tables. The syntax for this option is similar to the create table command and
reads as follows:

create existing table table_name (column_list)
 [on segment_name]
at “pathname”

Getting Started with Component Integration Services

58

When the server processes this command, it does not create a new table.
Instead, it checks the table mapping and verifies the existence of the underlying
object. If the object does not exist (either host data file or remote server object),
the server rejects the command and returns an error message to the client.

After you define an existing table, it is good practice to issue an update
statistics command for that table. This helps the query optimizer make
intelligent choices regarding index selection and join order.

Example Figure 3-2 illustrates the remote Adaptive Server tables publishers and titles in
the sample pubs2 database mapped to a local server.

Figure 3-2: Defining remote tables in a local server

Mapping the Remote
Tables

The steps required to produce the mapping illustrated above are as follows:

1 Define a server named SYBASE. Its server class is sql_server, and its
name in the interfaces file is SYBASE:

exec sp_addserver SYBASE, sql_server, SYBASE

2 Define a remote login alias. This step is optional. User “sa” is known to
remote server SYBASE as user “sa,” password “timothy”:

exec sp_addexternlogin SYBASE, sa, sa, timothy

3 Add an object definition for the remote publishers table:

exec sp_addobjectdef publishers,
"SYBASE.pubs2.dbo.publishers", "table"

4 Define the remote publishers table:

create existing table publishers

 SYBASE server
pubs2 database

owner “dbo”

Tables

MYCIS Server
myown database

owner “sa”

Tables

publishers
proxy table

publishers table

....pub_id pub_name city

books
proxy table

titles table

....title_id title type

Proxy

CHAPTER 3 Using Component Integration Services

59

 (
 pub_idchar(4) not null,
 pub_namevarchar(40)null,
 city varchar(20)null,
 state char(2) null
)
at "SYBASE.pubs2.dbo.titles"

5 Define the remote titles table:

create existing table books
 (
 title_idtid not null,
 title varchar(80)not null,
 type char(12) not null,
 pub_idchar(4) null,
 price money null,
 advancemoney null,
 total_salesint null,
 notes varchar(200)null,
 pubdatedatetime not null,
 contractbit not null
)

6 Update statistics in both tables to ensure reasonable choices by the query
optimizer:

update statistics publishers
update statistics books

Step 5: Perform the Join

Use the select statement to perform the join.

select Publisher = p.pubname, Title = b.title
 from publishers p, books b
 where p.pub_id = b.pub_id
 order by p.pubname

Configuration and Tuning

60

Configuration and Tuning
This section is intended for System Administrators. It provides information
about configuration, tuning, trace flags, backup and recovery, and security
issues.

The System Administrator or database owner may elect to use the server in
such a way as to optimize performance or to allow use by a required number of
clients. Configuration choices might involve being able to review total
numbers of reads and writes for a given SQL command.

Once an application is up and running, the System Administrator should
monitor performance and may choose to customize and fine-tune the system.
The server provides tools for these purposes. This section explains:

• Changing system parameters with the sp_configure procedure

• Using update statistics to ensure that Component Integration Services
makes the best use of existing indexes

• Monitoring server activity with the dbcc command.

• Setting trace flags

• Executing ddlgen and related backup and recovery issues

• Determining database size requirements

Using sp_configure
The configuration parameters in the sp_configure system procedure control
resource allocation and performance. The System Administrator can reset
these configuration parameters in order to tune performance and redefine
storage allocation. In the absence of intervention by the System Administrator,
the server supplies default values for all the parameters.

The procedure for resetting configuration parameters is:

• Execute the system procedure sp_configure, which updates the values
field of the system table master..sysconfigures.

• Restart the server if you have reset any of the static configuration
parameters. The parameters listed below are dynamic; all others are static:

cis rpc handling
cis cursor rows
cis connect timeout

CHAPTER 3 Using Component Integration Services

61

cis bulk insert batch size
cis packet size

sysconfigures Table

The master..sysconfigures system table stores all configuration options. It
contains columns identifying the minimum and maximum values possible for
each configuration parameter, as well as the configured value and run value for
each parameter.

The status column in sysconfigures cannot be updated by the user. Status 1
means dynamic, indicating that new values for these configuration parameters
take effect immediately. The rest of the configuration parameters (those with
status 0) take effect only after the reconfigure command has been issued and
the server restarted.

You can display the configuration parameters currently in use (run values) by
executing the system procedure sp_configure without giving it any
parameters.

Changing the Configuration Parameters

The stored procedure sp_configure displays all the configuration values when
it is used without an argument. When used with an option name and a value,
the server resets the configuration value of that option in the system tables.

See the System Administration Guide for a complete discussion of
sp_configure with syntax options.

To see the Component Integration Services options enter:

sp_configure "Component Integration Services"

To change the current value of a configuration parameter, execute
sp_configure as follows:

sp_configure "parameter", value

Component Integration Services Configuration Parameters

The following configuration parameters are unique to Component Integration
Services:

• enable cis

• max cis remote connections

Configuration and Tuning

62

• max cis remote servers

• cis bulk insert batch size

• cis connect timeout

• cis cursor rows

• cis packet size

• cis rpc handling

enable cis Use this parameter with sp_configure to enable Component Integration
Services as follows:

1 Log into Adaptive Server as the System Administrator and issue the
following command:

sp_configure "enable cis", 1

2 Restart Adaptive Server.

Issuing the command sp_configure "enable cis", 0 disables Component
Integration Services after restarting the server.

max cis remote
connections

The server establishes Client-Library connections to remote servers on behalf
of clients. More than one connection per client may be required if multiple
servers are being accessed by that client. By default, Component Integration
Services allows up to 4 connections per user to be made simultaneously to
remote servers. For example, if you set the maximum number of users to 25,
up to 100 simultaneous Client-Library connections are allowed by Component
Integration Services.

If this number does not meet the needs of your installation, you can override
the setting by specifying how many outgoing Client-Library connections you
want the server to be able to make at one time.

max cis remote
servers

This configuration parameter allows you to specify how many concurrent
servers can be accessed from within the server using Client-Library
connections. The default is 25.

cis bulk insert batch
size

This configuration parameter determines how many rows from the source
table(s) are to be bulk copied into the target table as a single batch using select
into, when the target table resides in an Adaptive Server or in a DirectConnect
server that supports a bulk copy interface.

If left at zero (the default), all rows are copied as a single batch. Otherwise,
after the count of rows specified by this parameter has been copied to the target
table, the server issues a bulk commit to the target server, causing the batch to
be committed.

CHAPTER 3 Using Component Integration Services

63

If a normal client-generated bulk copy operation (such as that produced by the
bcp utility) is received, the client is expected to control the size of the bulk
batch, and the server ignores the value of this configuration parameter.

cis connect timeout This configuration parameter determines the wait time in seconds for a
successful Client-Library connection. By default, no timeout is provided.

cis cursor rows This configuration parameter allows users to specify the cursor row count for
cursor open and cursor fetch operations. Increasing this value means more
rows will be fetched in one operation. This increases speed but requires more
memory. The default is 50.

cis packet size This configuration parameter allows you to specify the size of Tabular Data
Stream™ (TDS) packets that are exchanged between the server and a remote
server when connection is initiated.

The default packet size on most systems is 512 bytes, which is adequate for
most applications. However, larger packet sizes may result in significantly
improved query performance, especially when text and image or bulk data is
involved.

If a packet size larger than the default is specified, and the requested server is
release 10.0 or later, then the target server must be configured to allow
variable-length packet sizes. Adaptive Server configuration parameters of
interest in this case are:

• additional netmem

• maximum network packet size

Refer to the System Administration Guide for a complete explanation of these
configuration parameters.

cis rpc handling This global configuration parameter determines whether Component
Integration Services will handle outbound RPC requests by default. When this
is enabled using sp_configure “cis rpc handling” 1 , all outbound RPCs are
handled by Component Integration Services. When you use sp_configure “cis
rpc handling” 0 , the Adaptive Server site handler is used. The thread cannot
override it with set cis_rpc_handling on . If the global property is disabled, a
thread can enable or disable the capability, as required.

For more information on using the Adaptive Server site handler vs. using
Component Integration Services to handle outbound RPCs, see “RPC
Handling and Component Integration Services” on page 67.

Configuration and Tuning

64

Global Variables for Status
The following global variables have been added for CIS users:

• @@cis_rpc_handling

• @@transactional_rpc

• @@textptr_parameters

These global variables show the current status of the corresponding
configuration parameters. For instance, to see the status of cis_rpc_handling,
issue the following command:

select @@cis_rpc_handling

This returns either 0 (off) or 1 (on).

CHAPTER 3 Using Component Integration Services

65

Java in the Database
Java in the Database is supported for remote data access with Component
Integration Services.

The following restrictions apply:

• Java is supported for remote Adaptive Server Enterprise 12.x servers only.

• Java is supported for language events only (no dynamic SQL can be used
with remote tables.)

Before using Java for remote data access, read the section elsewhere in this
book entitled “Java Classes in SQL.” Then, after installing your Java class
files on the local server, install the required Java class files on the remote
server.

Quickpass
Inserts, updates and deletes must employ the Component Integration Services
quickpass mode. The quickpass mode is defined as follows:

• Every table represented in the SQL statement resides within a single
remote server.

• The remote server is capable of processing all the syntax represented by
the statement.

@@textsize
Data is returned as a serialized Java object using the image datatype format and
then deserialized on the local server. @@textsize must be set large enough to
hold the serialized object. If @@textsize is set too small, the object will be
truncated, and the deserialization will fail.

Constraints on Java Class Columns
Constraints defined on Java columns of remote tables must be checked on the
remote server. If the constraint checking is attempted on the local server, it will
fail. Therefore, you must enable trace flag 11220 when you insert, update or
delete data for which constraint checking will be done on Java data types. See
“Trace Flags” on page 75.

Java in the Database

66

Error Messages
There are two new error messages that are specific to Java use with remote data
access:

• Error 11275 – A statement referencing an extended datatype contained
syntax that prevented it from being sent to the remote server. Rewrite the
statement or remove the extended datatype reference.

• Error 11276 – An object in column '<colname>' could not be deserialized,
possibly because the object was truncated. Check that the value of
@@textsize is large enough to accommodate the serialized object.

CHAPTER 3 Using Component Integration Services

67

RPC Handling and Component Integration Services
When Component Integration Services is enabled, you can choose between the
site handler or Component Integration Services to handle outbound remote
procedure calls (RPCs). Each of these mechanisms is described in the
following sections.

Site Handler Handling Outbound RPCs
Within an Adaptive Server, outgoing RPCs are transmitted by means of a
site handler, which multiplexes multiple requests through a single physical
connection to a remote server. The RPC is handled as part of a multistep
operation:

1 Establish connection – The Adaptive Server site handler establishes a
single physical connection to the remote server. Each RPC requires that a
logical connection be established over this physical connection. The
logical connection is routed through the site handler of the intended
remote server.

The connection validation process for these connect requests is different
than that of normal client connections. First, the remote server must
determine if the server from which the connect request originated is
configured in its sysservers table. If so, then the system table
sysremotelogins is checked to determine how the connect request should
be handled. If trusted mode is configured, password checking is not
performed. (For more information about trusted mode, see “Trusted
Mode” on page 2-32.)

2 Transmit the RPC – The RPC request is transmitted over the logical
connection.

3 Process results – All results from the RPC are relayed from the logical
connection to the client.

4 Disconnect – The logical connection is terminated.

Because of the logical connect and disconnect steps, site handler RPCs can be
slow.

RPC Handling and Component Integration Services

68

Component Integration Services Handling Outbound RPCs
If Component Integration Services has been enabled, a client can use one
of two methods to request that Component Integration Services handle
outbound RPC requests:

• Configure Component Integration Services to handle outbound
RPCs as the default for all clients by issuing:

sp_configure "cis rpc handling", 1

If you use this method to set the cis rpc handling configuration parameter,
all client connections inherit this behavior, and outbound RPC requests are
handled by Component Integration Services. This is a server property
inherited by all future connections. The client can, if necessary, revert back
to the default Adaptive Server behavior by issuing the command:

set cis_rpc_handling off

• Configure Component Integration Services to handle outbound RPCs for
the current connection only by issuing:

set cis_rpc_handling on

This command enables cis rpc handling for the current thread only, and
will not affect the behavior of other threads.

When cis rpc handling is enabled, outbound RPC requests are not routed
through the Adaptive Server’s site handler. Instead, they are routed through
Component Integration Services, which uses persistent Client-Library
connections to handle the RPC request. Using this mechanism, Component
Integration Services handles outbound RPCs as follows:

1 Determines whether the client already has a Client-Library connection to
the server in which the RPC is intended. If not, establish one.

2 Sends the RPC to the remote server using Client-Library functions.

3 Relays the results from the remote server back to the client program that
issued the RPC using Client-Library functions.

RPCs can be included within a user-defined transaction. In fact, all work
performed by Component Integration Services on behalf of its client can be
performed within a single connection context. This allows RPCs to be included
in a transaction’s unit of work, and the work performed by the RPC can be
committed or rolled back with the other work performed within the transaction.
This transactional RPC capability is supported only when release 10.0 or later
Servers or DirectConnect servers are involved.

CHAPTER 3 Using Component Integration Services

69

The side effects of using Component Integration Services to handle
outbound RPC requests are as follows:

• Client-Library connections are persistent so that subsequent RPC requests
can use the same connection to the remote server. This can result in
substantial RPC performance improvements, since the connect and
disconnect logic is bypassed for all but the first RPC.

• Work performed by an RPC can be included in a transaction, and is
committed or rolled back with the rest of the work performed by the
transaction. This transactional RPC behavior is currently supported only
when the server receiving the RPC is another Adaptive Server or a
DirectConnect which supports transactional RPCs.

• Connect requests appear to a remote server as ordinary client connections.
The remote server cannot distinguish the connection from a normal
application’s connection. This affects the remote server management
capabilities of an Adaptive Server, since no verification is performed
against sysremotelogins, and all connections must have valid Adaptive
Server login accounts established prior to the connect request (trusted
mode cannot be used in this case). For more information about trusted
mode, see “Trusted Mode” on page 2-32.

Sending Text as RPC Parameters
You can add an optional clause to the create existing table statement to indicate
that a remote object is a stored (or other) procedure instead of a table. Without
this clause, the remote object is assumed to be a table or view:

create existing table t1
(

column_1 int,
column_2 int

)
EXTERNAL PROCEDURE AT "SERVER_A.mydb.dbo.t1"

In the case where the remote object is type procedure, processing differences
will occur:

No indexes will be created for objects of this type.

RPC Handling and Component Integration Services

70

Provide a column list that matches the description of the remote procedure’s
result set. This column list is the responsibility of the user, and no verification
of its accuracy is provided. You can use column names beginning with
underscore ('_') to specify parameters, which are not part of the remote
procedure’s result set. These columns are referred to as parameter columns. For
example:

create existing table rpc1
(

a int,
b int,
c int,
_p1 int null,
_p2 int null

)
external procedure
at "SYBASE.sybsystemprocs.dbo.myproc"

select a, b, c from t1
where _p1 = 10 and _p2 = 20

In this example, the parameter columns _p1 and _p2 are not expected in the
result set, but can be referenced in the query. Component Integration Services
passes the search arguments to the remote procedure via parameters, using the
names @p1 and @p2.

If a parameter column is included in the select list, its value is equivalent to the
values specified for it in the where clause, if it was passed to the remote
procedure as a parameter.

If the parameter column did not appear in the where clause, or was not able to
be passed to the remote procedure as a parameter, but was included in the select
list, its value would be NULL.

Sending Large Data Chunks
You can send large chunks of data in a single remote procedure call. This is
done by treating certain parameters as textptrs, then de-referencing these text
pointers to obtain the text values associated with them. The text data is then
packaged into 32K chunks and handed to Client Library as parameters to the
RPC.

CHAPTER 3 Using Component Integration Services

71

A text pointer is identified as a parameter of type either binary(16) or
varbinary(16). The text value referenced by each text pointer parameter is
obtained when an RPC is executed, and expanded into 32K chunks, each of
which is passed to Client Library as a parameter of type
CS_LONGCHAR_TYPE.

To send text as RPC parameters, take the following steps:

1 Use the following set commands:

set cis_rpc_handling ON
set textptr_parameters ON

The defaults are OFF

2 Declare a pathname as varchar.

3 Declare textptrs as binary(16) or varbinary(16).

4 Assign actual values to the textptrs from actual text pointers.

5 Send the RPC using the pathname argument.

When an RPC is requested (assume omni_rpc_handling ON), textptrs are de-
referenced in the CIS layer, and the text value is used to construct the parameter
for Client Library.

For this to work, textptrs must be preceded by a path name argument, which is
used to identify the source table from which the textptrs were derived. For
example:

declare @pathname varchar(90)
declare @textptr1 binary(16)
declare @textptr2 binary(16)

select @pathname = "mydatabase.dbo.t1",
@textptr1 = textptr(c1),
@textptr2 = textptr(c2)

from mydatabase.dbo.t1
where ...

set textptr_parameters ON

exec NETGW...myrpc @pathname, @textptr1, @textptr2

set textptr_parameters OFF

When the RPC named myrpc gets sent to server NETGW, the @pathname
parameter is not actually sent, but is used to help locate the text values
referenced by the textptrs @textptr1 and @textptr2.

RPC Handling and Component Integration Services

72

The varchar parameter @pathname must immediately precede the binary(16)
parameter, otherwise it will be considered an ordinary parameter and will be
transmitted to the server NETGW as such.

If the text values of a textptr exceed 32K in size, the text will be broken into
32K chunks, each of which will be a separate parameter of type
CS_LONGCHAR_TYPE.

The current value of @@textsize will be ignored.

This scheme also works with proxy tables mapped to remote procedures. For
example:

select id,
crdate,
name

from myrpctable
where _pathname = "mydatabase.dbo.t1" and

_textptr1 = @textptr1 and
_textptr2 = @textptr2

create existing table myrpctable
(

id int, -- result column
crdate datetime,-- result column
name varchar(30),-- result column
_pathname varchar(90),-- parameter column
_textptr1 binary(16),-- parameter column
_textptr2 binary(16),-- parameter column

) external procedure at ’NETGW...myrpc’
go

declare @textptr1 binary(16)
declare @textptr2 binary(16)

select @textptr1 = textptr(c1),
@textptr2 = textptr(c2)

from mydatabase.dbo.t1
where <whatever>

set textptr_parameters ON

select id,
crdate,
name

from myrpctable
where _pathname = "mydatabase.dbo.t1" and

_textptr1 = @textptr1 and
_textptr2 = @textptr2

CHAPTER 3 Using Component Integration Services

73

When the query against the proxy table myrpctable is processed, Component
Integration Services will send an RPC named “myrpc” to the server 'NETGW'.
The parameters will be derived from the search arguments contained in the
where clause of the query. Since the textptr_parameters option has been set
ON, the textptrs will be expanded to CS_LONGCHAR_TYPE, just as in the
case of the RPC example shown previously.

This feature only works with servers that support CS_LONGCHAR_TYPE.

dbcc Commands

74

dbcc Commands
All dbcc commands used by Component Integration Services are
available with a single dbcc entry point.

The syntax for dbcc cis is:

dbcc cis ("subcommand"[, vararg1, vararg2...])

If Component Integration Services is not configured or loaded, the command
will result in a run-time error.

The use of the dbcc cis command is unrestricted.

dbcc Options
The following dbcc options are unique to Component Integration
Services.

remcon remcon displays a list of all remote connections made by all Component
Integration Services clients. It takes no arguments.

rusage rusage returns a report describing the total memory used by each
Component Integration Services resource utilizing shared memory. The
report describes total configured items, number of items used, number of items
available, and total memory used for each resource.

srvdes srvdes returns a formatted list of all in-memory SRVDES structures, if no
argument is provided. If an argument is provided, this command syncs the in-
memory version of a SRVDES with information found in sysservers. The
command takes an optional argument as follows:

srvdes, [srvid]

showcaps showcaps shows a list of all capabilities for servername by capability name,
ID, and value as follows:

showcaps, servername

Example:

dbcc cis(“showcaps”, “servername”)

setcaps setcaps sets a specific capability (identified by cap_id) to a new value. The
command takes an optional argument as follows:

setcaps, servername, [cap_id, new_value]

CHAPTER 3 Using Component Integration Services

75

In the following format, setcaps resets all capabilities for the
server to original values:

dbcc cis("setcaps", "servername", -1)

Trace Flags
The dbcc traceon option allows the System Administrator to turn on trace
flags within Component Integration Services. Trace flags enable the
logging of certain events when they occur within Component Integration
Services. Each trace flag is uniquely identified by a number. Some are global
to Component Integration Services while others are spid-based and
affect only the user who enabled the trace flag. dbcc traceoff turns off trace
flags.

The syntax is:

dbcc traceon (traceflag [, traceflag...])

Trace flags and their meanings are shown in Table 3-1:

Table 3-1: Component Integration Services trace flags

Trace Flag Description

3703 Disables proxy table index creation during create existing table
or create proxy_table command execution. If this flag is set on,
then no index metadata will be imported from the remote site
referenced by the proxy table, and no indexes for the proxy
table will be created. This trace flag is global and should be
used with care and turned off when no longer necessary.
(global)

11201 Logs client connect events, disconnect events, and attention
events. (global)

11202 Logs client language, cursor declare, dynamic prepare, and
dynamic execute-immediate text. (global)

11203 Logs client rpc events. (global)

11204 Logs all messages routed to client. (global)

11205 Logs all interaction with remote server. (global)

11206 Not used.

11207 Logs text and image processing. (global)

11208 Prevents the create index and drop table statements from being
transmitted to a remote server. sysindexes is updated anyway.
(spid)

dbcc Commands

76

Using update statistics
The update statistics command helps the server make the best decisions about
which indexes to use when it processes a query, by providing information about
the distribution of the key values in the indexes. update statistics is not
automatically run when you create or re-create an index on a table that already
contains data. It can be used when a large amount of data in an indexed column
has been added, changed, or deleted. The crucial element in the optimization
of your queries is the accuracy of the distribution steps. Therefore, if there are
significant changes in the key values in your index, rerun update statistics on
that index.

Only the table owner or System Administrator can issue the update statistics
command.

Only the table owner or System Administrator can issue the update statistics
command. In addition, your curwrite level must dominate the hurdle of the
table.

11209 Instructs update statistics to obtain just row counts rather than
complete distribution statistics, from a remote table. (spid)

11210 Disables Component Integration Services enhanced
remote query optimization. (spid)

11211 Not used.

11212 Prevents escape on underscores (“_”) in table names. (spid)

11213 Prevents generation of column and table constraints. (spid)

11214 Disables Component Integration Services recovery
at start-up. (global)

11215 Sets enhanced remote optimization for servers of class db2.
(global)

11216 Disables enhanced remote optimization. (spid)

11217 Disables enhanced remote optimization. (global)

11220 Disables contraint checking of remote tables on the local
server. This avoids duplicate checking. Setting this trace flag
ON ensures that a query won’t be rejected by the quickpass
mode because of constraints. (spid)

11221 Disables alter table commands to the remote server when ON.
This allows users to modify type, length and nullability of
columns in a local table without changing columns in the
remote table. Use trace flag 11221 with caution. It may lead to
tables which are “out of sync.” (spid)

Trace Flag Description

CHAPTER 3 Using Component Integration Services

77

The syntax is:

update statistics table_name [index_name]

If you do not specify an index name, the command updates the distribution
statistics for all the indexes in the specified table. Giving an index name
updates statistics for that index only.

Try to run update statistics at a time when the tables you need to specify are
not heavily used. update statistics acquires locks on the remote tables and
indexes as it reads the data. If trace flag 11209 is used, tables will not be locked.

The server performs a table scan for each index specified in the update
statistics command.

Since Transact-SQL does not require index names to be unique in a database,
you must give the name of the table with which the index is associated.

After running update statistics, run sp_recompile so that triggers and
procedures that use the indexes will use the new distribution:

sp_recompile authors

Finding Index Names

You can find the names of indexes by using the sp_helpindex system
procedure. This procedure takes a table name as a parameter.

To list the indexes for the authors table, type:

sp_helpindex authors

To update the statistics for all of the indexes in the table, type:

update statistics authors

To update the statistics only for the index on the au_id column, type:

update statistics authors auidind

Shared Memory Requirements

78

Shared Memory Requirements
When configured, the Component Integration Services shared library
draws memory from the shared memory pool initialized by the server during
start-up. The amount of memory required by the shared library varies,
depending on configuration values. Five resources are managed by the shared
library. To view the resources, execute the following dbcc command:

dbcc cis("rusage")

With 25 users, the output might look like this:

ResourceConfiguredAvailableMemory(Bytes)
 ----------- ---------- --------- -------------CIS
SRVDES 25 24 4900
 CIS DES 500 498 134000
 CIS PSS 49 48 2940
 CIS RDES 100 100 20800
 CIS CURSOR 400 400 49600

With 50 users, the output might look like this:

ResourceConfiguredAvailableMemory(Bytes)
 ----------- ---------- --------- ------------- CIS
SRVDES 25 25 4900
 CIS DES 500 500 134000
 CIS PSS 74 73 4440
 CIS RDES 100 100 20800
 CIS CURSOR 800 800 99200

The resources are configured as follows:

• CIS SRVDES – configured via the max cis remote servers configuration
parameter. The default is 25. Each additional SRVDES requires
approximately 196 bytes of memory.

• CIS DES – configured indirectly via the open objects configuration
parameter. For each open object, a CIS DES is allocated. Each CIS DES
requires 268 bytes of memory.

• CIS PSS – configured indirectly via the user connections configuration
parameter. For each user connection, a CIS PSS is allocated. Each CIS
PSS requires 60 bytes of memory.

• CIS RDES – configured indirectly via the max cis remote connections
configuration parameter. There is one CIS RDES for each remote
connection.

CHAPTER 3 Using Component Integration Services

79

• CIS CURSOR – configured indirectly via the user connections
configuration parameter. The number of CIS CURSOR resources is
calculated as:

4 * user connections

Each CIS CURSOR requires 124 bytes of memory.

Additional Component Integration Services Memory Requirements
In addition to the shared memory used by Component Integration
Services, dynamic memory which is not accounted for by any configuration
value is also used. Dynamic memory is used for:

• The shared library – When Component Integration Services is
configured and loaded, the shared library adds approximately 550K to the
size of the server executable. This additional memory usage does not
appear anywhere, except in operating system commands (for example, the
UNIX ps command).

• Dynamic Client-Library memory – When connections to remote servers
are necessary, Component Integration Services uses Client-Library
to establish them. During query and results processing, Client-Library
dynamically allocates additional memory and then frees it when the
connection ends or statement completes.

Backing Up Your System

80

Backing Up Your System
Use the backup utility. See the System Administration Guide for details.

81

C H A P T E R 4 Server Classes

This chapter provides reference material on the server classes supported
by Component Integration Services. The topics include:

Each server class has a set of unique characteristics that System
Administrators and programmers need to know about in order to configure
the server for remote data access. These properties are:

• Types of servers that each server class supports

• Datatype conversions specific to the server class

• Restrictions on Transact-SQL statements that apply to the server class

Name Page

Defining Remote Servers 82

Datatype Conversions 86

Remote Server Capabilities 87

Transact-SQL Commands 88

Defining Remote Servers

82

Defining Remote Servers
Use the system procedure sp_addserver to add entries to the sysservers table
for the local server and for each remote server that is to be called. The
sp_addserver syntax is:

sp_addserver server_name [,server_class [,network_name]]

where:

• server_name is the name used to identify the server. It must be unique.

• server_class is the type of server. The supported server classes with the
types of servers that are in each class are described in the following
sections. The default is server class ASEnterprise.

• network_name is the server name in the interfaces file. This name may be
the same as server_name, or it may differ. The network_name is
sometimes referred to as the physical name. The default is the same name
as server_name.

Server Class ASEnterprise
A server with server class ASEnterprise is Adaptive Server Enterprise version
11.5 or later. When CIS first establishes a connection to a server in this class,
CIS will determine the version (i.e. 11.5, 11.9.2, 12.0, etc.) and establish server
capabilities based on the version found. For example, version 12.0 supports
ANSI syntax for outer joins, while prior versions do not.

Server Class ASAnywhere
A server with server class ASAnywhere is an instance of Adaptive Server
Anywhere or Adaptive Server IQ:

• Adaptive Server Anywhere 6.0 or later

• Adaptive Server IQ 12.0 or later

Server Class ASIQ
A server with server class ASIQ is any version of Adaptive Server IQ prior to
version 12.

CHAPTER 4 Server Classes

83

Server Class sql_server
A server with server class sql_server is:

• SQL Server release 4.9 or later

• SQL Anywhere release 5.5.01 or later

• Microsoft SQL Server version 4.2 or later

• OmniConnect release 10.5 or later

• OmniSQL Server 10.1.2

Server Class db2
A server with server class db2 is an IBM DB2 database accessed through:

• Net-Gateway™ release 3.0 or later (Net-Gateway release 3.01 can also be
configured as server class direct_connect)

• DirectConnect for MVS / TRS (can also be configured as server class
direct_connect)

• InfoHub

Server Class direct_connect
A server with server class direct_connect is an Open Server-based application
that conforms to the direct_connect interface specification. Server class
access_server is synonymous with server class direct_connect. It is used for
compatibility with previous releases.

Open Server-based applications using server class direct_connect are the
preferred means of accessing all external, non-Sybase data sources.

Figure 4-1 illustrates the manner in which Adaptive Server with Component
Integration Services enabled interacts with clients and Open Server-based
applications. The data sources are not limited to those in this diagram:

Defining Remote Servers

84

Figure 4-1: Adaptive Server with CIS interacts with clients and other
servers

Server Class sds
A server with server class sds conforms to the interface requirements of a
Specialty Data Store™ as described in the Adaptive Server Specialty Data
Store Developer’s Kit manual. A Specialty Data Store is an Open Server
application you design to interface with Adaptive Server.

 DirectConnect - Oracle

 DirectConnect - DB2

 DirectConnect - AS/400

Client
application

Client
application

Access to DirectConnect
DirectConnect - Informix

Network

 Adaptive Server

CIS

CHAPTER 4 Server Classes

85

Server Class generic
The server class generic allows customers to build their own Open Server
applications to communicate with the server. The customer-built application
must conform to the interface described in the OmniSQL Server Generic
Access Module Reference Manual.

The server class generic is supported for compatibility with existing Open
Server applications. Server class sds replaces server class generic. New Open
Server applications that are compatible with Component Integration Services
should follow the interface specification in the Adaptive Server Specialty Data
Store Developer’s Kit manual.

Datatype Conversions

86

Datatype Conversions
Datatype conversion can take place whenever the server receives data from a
remote source, be it DB2, Adaptive Server, or an Open Server-based
application.

Depending on the remote datatype of each column, data is converted from the
native datatype on the remote server to a form that the local server supports.

Datatype conversions are made when the create table, alter table and create
existing table commands are processed. The datatype conversions are
dependent on the server’s server class. See the create table, alter table and
create existing table commands in the following reference pages for tables
that illustrate the datatype conversions that take place for each server class
when the commands are processed.

CHAPTER 4 Server Classes

87

Remote Server Capabilities
The first time Adaptive Server establishes a connection to a remote server of
class sds or direct_connect, it issues an RPC named sp_capabilities and
expects a set of results in return. This result set describes functional capabilities
of the remote server so that Component Integration Services can adjust its
interaction with that remote server to take advantage of available features.
Component Integration Services forwards as much syntax as possible to a
remote server, according to its capabilities.

For servers in other classes, CIS will set remote server capabilities for the
remote server based on a set of assumptions. For example, server class db2 will
inherit a set of assumptions based on known capabilities of IBM’s DB2
database management system. For server class ASEnterprise, capabilities are
established based on the version of ASE represented by the remote server.

Transact-SQL Commands

88

Transact-SQL Commands
The following pages are reference pages, presented in alphabetical order,
which discuss Transact-SQL commands that either directly or indirectly affect
external tables, and, as a result, Component Integration Services. For each
command, a description of its effect on Component Integration Services, and
the manner in which Component Integration Services processes the command,
is described. For a complete description of each command, see the Adaptive
Server Reference Manual.

If Component Integration Services does not pass all of a command’s syntax to
a remote server (such as all clauses of a select statement), the syntax that is
passed along is described for each server class.

Each command has several sections that describe it:

Function - contains a brief description of the command.

Syntax - contains a description of the full Transact-SQL syntax of the
command.

Comments - contains a general, server class-independent description of
handling by Component Integration Services.

Server Class ASEnterprise - contains a description of handling specific to
server class ASEnterprise. This includes syntax that is forwarded to a remote
server of class ASEnterprise.

Server Class ASAnywhere - contains a description of handling specific to
server class ASAnywhere. This includes syntax that is forwarded to a remote
server of class ASAnywhere.

Server Class ASIQ - contains a description of handling specific to server class
ASIQ. This includes syntax that is forwarded to a remote server of class ASIQ.

Server Class sql_server - contains a description of handling specific to server
class sql_server. This includes syntax that is forwarded to a remote server of
class sql_server.

Server Class direct_connect - contains a description of handling specific to
server class direct_connect (access_server). This includes syntax that is
forwarded to a remote server of class direct_connect (access_server). In this
release, all comments that apply to server class direct_connect, also apply to
server class sds.

Server Class db2 - contains a description of handling specific to server class
db2. This includes syntax that is forwarded to a remote server of class db2.

CHAPTER 4 Server Classes

89

Server Class generic - contains a description of handling specific to server
class generic. This includes syntax that is forwarded to a remote server of class
generic.

alter database

90

alter database
Description Increases the amount of space allocated to a database. Synchronizes proxy

table metadata with tables at remote location.

Syntax alter database database_name
[on {default | database_device } [= size]
[, database_device [= size]]...]
[log on { default | database_device } [= size]
 [, database_device [= size]]...]
[with override]
[for load]
[for proxy_update]]

Usage Usage

• If a database has been created with the optional clause with
default_location = pathname, then the alter database command, with
the for proxy_update clause, will re-synchronize the proxy tables in the
named database with tables and views found in the pathname to the remote
location.

• The default location may also have been specified with the system stored
procedure sp_defaultloc. The for proxy_update clause of alter database
works the same way in this case.

• This is a convenient, one-step procedure for keeping the proxy table
definition in sync with the definition of actual tables and views in a remote
database.

• If for proxy_update is specified with no size or device name, then the size
is not altered; only proxy table synchronization is performed.

• In some cases, a database may not be large enough to contain all proxy
table definitions; therefore, it may be necessary to change the size as well
when the for proxy_update clause is used.

• When for proxy_update is used, the names of remote tables and views are
obtained from the server specified in the default location for the database
(master.dbo.sysdatabases.default_loc) using the RPC named sp_tables.
For each user table and view, column attributes are then obtained, using
the RPC named sp_columns. Once all metadata has been obtained for a
table (or view), an internal command is executed which is equivalent to
create existing table, causing the proxy table to be created within the
named database.

• If the proxy table already exists, it is automatically dropped before the
internal create existing table command is executed.

CHAPTER 4 Server Classes

91

• After the proxy table is created, index metadata is obtained from the
remote location so that indexes on the proxy table can also be created.
Index metadata is obtained from the remote server using the RPC
sp_statistics.

• This command behaves the same way for all server classes; interaction
with the remote server associated with the database default location is
limited to the RPCs sp_tables, sp_columns and sp_statistics (to import
index information).

See also See Also

create database in the Adaptive Server Reference Manual and later in this
chapter.

alter table

92

alter table
Description Adds, changes or drops columns; adds, changes, or drops constraints; partitions

or unpartitions an existing table; changes the locking scheme for an existing
table; specifies ascending or descending index order when alter table is used
to create referential integrity constraints that are based on indexes; specifies the
ratio of filled pages to empty pages, to reduce storage fragmentation.

Syntax alter table [database.[owner].]table_name
 {add column_name datatype
 [default {constant_expression | user | null}]

{identity | null | not null}
 | [[constraint constraint_name]
 {{unique | primary key}

[clustered | nonclustered] [asc | desc]
[with { { fillfactor = pct

 | max_rows_per_page = num_rows }
 , reservepagegap = num_pages }]
 [on segment_name]
 | references [[database.]owner.]ref_table
 [(ref_column)]
 | check (search_condition)] ... }
 [, next_column]...

| add { [constraint constraint_name]
 { {unique | primary key}
 [clustered | nonclustered]
 (column_name [asc | desc]
 [, column_name [asc | desc]...])
 [with { { fillfactor = pct
 | max_rows_per_page = num_rows}
 , reservepagegap = num_pages}]
 [on segment_name]
 | foreign key (column_name [{, column_name}...])
 references [[database.]owner.]ref_table
 [(ref_column [{, ref_column}...])]
 | check (search_condition)}

| drop {[column_name [, column_name]] |
[constraint constraint_name]}

| modify column_name {[data_type] [null] |
[not null]] [, column_name]

| replace column_name
 default {constant_expression | user | null}

| partition number_of_partitions

| unpartition

CHAPTER 4 Server Classes

93

| lock {allpages | datarows | datapages } }

| with exp_row_size = num_bytes

Usage Usage

• Component Integration Services processes the alter table command when
the table on which it operates has been created as a proxy table.
Component Integration Services forwards the request (or part of it) to the
server that owns the actual object.

• When Component Integration Services forwards the alter table command
to a remote server, it is assumed that the column names on the proxy table
and on the remote server are the same.

• The only portions of the alter table command that are forwarded to a
remote server are add, modify and drop column. The rest of the syntax is
processed internally, and not forwarded to a remote server. The only
exception to this is the lock clause, and then only for ASEnterprise-class
servers.

Server Class ASEnterprise Component Integration Services forwards the
following syntax to a server configured as class sql_server:

alter table [database.[owner].]table_name
{add column_name datatype [{identity | null}]
 {[, next_column]}...}
| [drop column_name [, column_name]}
| modify column_name [data_type] [NULL] |

[not null]] [, column_name]}

• When a user adds a column with the alter table command, Component
Integration Services passes the datatype of each column to the remote
server without type name conversions.

• For ASEnterprise class servers only, the lock clause is also forwarded, if
contained in the original query, if the version of ASE is 11.9.2 or later.

Server Class ASAnywhere •Handling of the alter table command by
servers in this class is the same as for ASEnterprise servers.

Server Class ASIQ Handling of the alter table command by servers in this
class is the same as for ASEnterprise servers.

• text and datatypes are not supported by server class ASIQ. If text and
image datatypes are used, Component Integration Services raises Error
11205:

Datatype <typename> is unsupported for server <servername>.

alter table

94

Server Class sql_server •Handling of the alter table command by servers
in this class is the same as for ASEnterprise servers.

Server Class direct_connect •Component Integration Services forwards
the following syntax to a remote server configured as class direct_connect:

alter table [database.[owner].]table_name
 add column_name datatype [{identity | null}]
 {[, next_column]}...

• Although Component Integration Services requests a capabilities response
from a server with class direct_connect, support for alter table is not
optional. Component Integration Services forwards the alter table
command to the remote server regardless of the capabilities response.

• The behavior of the server with class direct_connect is database
dependent.alter table [database .[owner].]table_name
 {add column_name datatype [{identity | null}]
 {[, next_column]}... The Transact-SQL syntax is forwarded, and
errors may or may not be raised, depending on the ability of the remote
database to handle this syntax.

• If the syntax capability of the remote server indicates Sybase Transact-
SQL, Adaptive Server datatypes are sent to the remote server. If the syntax
capability indicates DB2 SQL, DB2 datatypes are sent. The mapping for
these datatypes is shown in Table 4-1

Table 4-1: DirectConnect datatype conversions for alter table

Adaptive
Server
 Datatype

DirectConnect
 Default Datatype

DirectConnect DB2
Syntax Mode Datatype

binary(n) binary(n) char(n) for bit data

bit bit char(1)

char char char

datetime datetime timestamp

decimal(p, s) decimal(p, s) decimal(p, s)

float float float

image image varchar(n)

 for bit data; the value of n is
determined by the global
variable @@textsize

int int int

money money float

numeric(p, s) numeric(p, s) decimal(p, s)

CHAPTER 4 Server Classes

95

Server Class db2 •Component Integration Services forwards the following
syntax to a remote server configured as class db2:

alter table [database.[owner].]table_name
 add column_name datatype [null]
 {[, next_column]}...

• text and image datatypes are not supported by server class db2. If text and
image datatypes are used, Component Integration Services raises Error
11205:

Datatype <typename> is unsupported for server <servername>

The datatype specification contains DB2 datatypes that are mapped from
Adaptive Server datatypes. The datatype conversions are shown in Table 4-2.

Table 4-2: DB2 datatype conversions for alter table

nchar(n) nchar(n) graphic(n)

nvarchar(n) nvarchar(n) vargraphic(n)

real real real

smalldatetime smalldatetime timestamp

smallint smallint smallint

smallmoney smallmoney float

timestamp timestamp varbinary(8)

tinyint tinyint smallint

text text varchar(n); the value of n is
determined by the global
variable @@textsize

varbinary(n) varbinary(n) varchar(n) for bit data

varchar(n) varchar(n) varchar(n)

Adaptive Server
Datatype DB2 Datatype

binary(n) char(n) for bit data, where n <= 254

bit char(1)

char(n) char(n), where n <= 254

datetime timestamp

decimal(p, s) decimal(p, s)

float float

image Not supported

Adaptive
Server
 Datatype

DirectConnect
 Default Datatype

DirectConnect DB2
Syntax Mode Datatype

alter table

96

Server Class generic •Component Integration Services forwards the
following syntax to a server with server class generic, unless a text, image,
decimal, or numeric datatypes is specified:

alter database [database.[owner].]table_name
 add column_name datatype [{identity | null}]
 {[, next_column]}...
[drop column_name [, column_name]}
modify column_name [data_type] [NULL] |
[not null]] [, column_name]}

If a text, image, decimal, or numeric datatype is used, Component
Integration Services raises Error 11205:

Datatype <typename> is unsupported for server
<servername>.

• When a user defines a column with the alter table command, a datatype
must be provided. The server passes the datatype name of each column to
the Generic Access Module without conversion.

See also See Also

alter table in the Adaptive Server Reference Manual.

int int

money float

nchar char(n)

nvarchar varchar(n)

numeric(p, s) decimal(p, s)

real real

smalldatetime timestamp

smallint smallint

smallmoney float

tinyint smallint

text Not supported

varbinary(n) varchar(n) for bit data, where n <=254

varchar(n) varchar(n), where n <= 254

Adaptive Server
Datatype DB2 Datatype

CHAPTER 4 Server Classes

97

begin transaction
Description Marks the starting point of a user-defined transaction.

Syntax begin tran[saction] [transaction_name]

Usage Usage

• When the Distributed Transaction Manager (DTM) is enabled, DTM
handles all transaction processing for servers of server class ASEnterprise
with a version of 12.0 or later.

• If the Adaptive Server is configured with strict dtm enforcement = 1, any
attempt to include a remote server in the transaction that has a server class
other than ASEnterprise will cause the transaction to be aborted.

• For all server classes, when Adaptive Server receives a begin transaction
command, an internal state is set which marks the beginning of a
transaction. At this point, Component Integration Services is not involved,
and the command is not immediately forwarded to remote locations.

• transaction_name is not used by Component Integration Services in this
release.

Sever Class ASEnterprise •Transaction process for servers in class
ASEnterprise with a version prior to 12.0 is identical to that of server class
sql_server (release 10.0 or later).

• When DTM is not enabled, transaction processing for all servers in class
ASEnterprise is identical to that of server class sql_server (release 10.0 or
later).

• Component Integration Services checks the transaction state of the
connection to a server of class ASEnterprise. If the internal transaction
state indicates that a transaction is in progress, and the state of the
connection to the remote participant indicates that no transaction is in
progress, Component Integration Services informs the Distributed
Transaction Manager that the server has become a participant in the
transaction. The Distributed Transaction Manager then issues a
BeginXact RPC to the remote server.

Server Class ASAnywhere •Transaction processing for servers in class
ASAnywhere is identical to that of server class sql_server (release 10.0 or
later).

Server Class ASIQ •Transaction processing for servers in class ASIQ is
identical to that of server class sql_server (release 10.0 or later).

begin transaction

98

Server Class sql_server •Component Integration Services checks the
transaction state of the connection to a server of class sql_server. If the
internal transaction state indicates that a transaction is in progress, and the
state of the connection to the server indicates that no transaction is in
progress, Component Integration Services forwards the begin
transaction command to the server prior to forwarding the first command
to that server. In the example below, assume tables t1 and t2 are both
located on the same remote SQL Server:

begin transaction

insert into t1 values (...)
 update t2 ...

commit transaction

At the time the begin transaction command is processed, no interaction
with the remote SQL Server occurs.

When the insert command is processed, the transaction state of the
connection to the server that owns t1 is checked. Since this is the first
command within the transaction, the connection is in a NO
TRANSACTION ACTIVE state, and the begin transaction command is
forwarded to the server. The insert command is then forwarded to the
remote location, and the transaction state for the connection is marked as
TRANSACTION ACTIVE.

When processing the update command, the transaction state of the server
that owns table t2 is checked. Since it is the same server that owns table
t1, it is in the TRANSACTION ACTIVE state, and the begin transaction
command is not forwarded.

Note These comments apply only to release 10.0 or later, which supports
cursors. For pre-release 10.0 SQL Server and Microsoft SQL Server,
transaction handling is similar to server class db2, described below.

Server Class direct_connect •Transaction processing for servers in class
direct_connect is identical to that of server class sql_server (release 10.0
or later).

CHAPTER 4 Server Classes

99

Server Class db2 •Transactions are supported only at the statement level for
servers in class db2. When the internal state of a client connection
indicates that there is an active transaction, Component Integration
Services precedes each statement forwarded to the server with a begin
transaction command. Component Integration Services then issues a
commit or rollback transaction (depending on the success or failure of
the statement) immediately after the statement is complete.

Server Class generic •Transactions are supported only at the statement
level for servers in class generic. When the internal state of a client
connection indicates that there is an active transaction, Component
Integration Services precedes each statement forwarded to the server with
the RPC gen_begin_xact. It then issues a gen_commit_xact or
gen_rollback_xact RPC (depending on the success or failure of the
statement) immediately after the statement is complete. Each statement
executes completely or not at all.

See also See Also

begin transaction in the Adaptive Server Reference Manual.

case

100

case
Description Supports conditional SQL expressions; can be used anywhere a value

expression can be used.

Syntax case
when search_condition then expression
[when search_condition then expression]...
[else expression]

end

Usage Usage

• case expression simplifies standard SQL expressions by allowing you to
express a search condition using a when...then construct instead of an if
statement.

• case expressions can be used anywhere an expression can be used in SQL.

• If your query produces a variety of datatypes, the datatype of a case
expression result is determined by datatype hierarchy. If you specify two
datatypes that Adaptive Server cannot implicitly convert (for example,
char and int), the query fails.

Server Class ASEnterprise The capability for handling case expressions is
set for ASE 11.5 and all later versions. The presence of a case expression in the
original query syntax will not cause the query optimizer to reject quickpass
mode.

Server Class ASAnywhere The capability for handling case expressions is
set for ASA 6.0, ASIQ 12.0, and all later versions. The presence of a case
expression in the original query syntax will not cause the query optimizer to
reject quickpass mode.

Server Class ASIQ •The capability for handling case expressions is not set
for servers in this class. When a SQL statement containing a case
expression is optimized, the presence of the case expression will cause
CIS quickpass optimization to reject the statement. When this happens, the
case expression must be evaluated by the local ASE after retrieving data
from the remote server.

Server Class sql_server •The capability for handling case expressions is
not set for servers in this class. When a SQL statement containing a case
expression is optimized, the presence of the case expression will cause
CIS quickpass optimization to reject the statement. When this happens, the
case expression must be evaluated by the local ASE after retrieving data
from the remote server.

CHAPTER 4 Server Classes

101

Server Class direct_connect The capability for handling case expressions
is determined by the result set from the RPC sp_capabilities. If the
direct_connect indicates that it can handle case expressions, then CIS will
forward them to the direct_connect when quickpass mode is used to handle the
query.

Server Class generic •The capability for handling case expressions is not
set for servers in this class. When a SQL statement containing a case
expression is optimized, the presence of the case expression will cause
CIS quickpass optimization to reject the statement. When this happens, the
case expression must be evaluated by the local ASE after retrieving data
from the remote server.

Server Class db2 The capability for handling case expressions is, by
default, not set for servers in this class. When a SQL statement containing a
case expression is optimized, the presence of the case expression will cause
CIS quickpass optimization to reject the statement. When this happens, the
case expression must be evaluated by the local ASE after retrieving data from
the remote server.

• If traceflag 11215 is turned on, the default capabilities for server class db2
are modified to enable more capabilities, and case expressions are enabled
by default. Note that DB2 does recognize case expression syntax. Also, the
traceflag must be turned on before CIS makes its first connection to the
remote server, or else the capabilities set by the first connection will
remain in effect until the server is rebooted or until modified by the
command:

dbcc cis(“setcaps”, “server”, id, value)

close

102

close
Description Deactivates a cursor.

Syntax close cursor_name

Usage Usage

• If the cursor specified by cursor_name contains references to proxy tables,
Adaptive Server notifies Component Integration Services to close and
deallocate its remote cursors for those tables.

• Component Integration Services uses Client-Library to manage cursor
operations to a remote server. When Component Integration Services
receives a close command, it uses the following Client-Library functions
to interact with the remote server:

ct_cursor(command, CS_CURSOR_CLOSE, NULL,
 CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

ct_cursor(command, CS_CURSOR_DEALLOC, NULL,
 CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

• If the cursor contains references to more than one proxy table, Component
Integration Services must close a remote cursor for each server
represented by the proxy tables.

See also See Also

deallocate cursor, declare cursor, fetch, open in this chapter.

close in the Adaptive Server Reference Manual.

CHAPTER 4 Server Classes

103

commit transaction
Description Marks the successful ending point of a user-defined transaction.

Syntax commit [tran[saction] | work] [transaction_name]

Usage Usage

• When Adaptive Server receives the commit transaction command, it
notifies Component Integration Services, and Component Integration
Services attempts to commit work associated with remote servers involved
in the current transaction.

• For all other server classes, when Adaptive Server receives the commit
transaction command, it notifies Component Integration Services, and
Component Integration Services attempts to commit work associated with
remote servers involved in the current transaction.

• Multiple remote servers can be involved in a single transaction, each with
their own unit of work which is associated with the Adaptive Server unit
of work.

• Remote work is committed before local work. If the remote servers do not
respond, or respond with errors, the transaction is aborted, including any
local work.

• Work performed by transactional RPC’s must be part of an explicit
transaction.

• transaction_name is not used by Component Integration Services in this
release.

Server Class ASEnterprise •Transaction process for servers in class
ASEnterprise with a version prior to 12.0 is identical to that of server class
sql_server (release 10.0 or later)

• When DTM is not enabled, transaction processing for all servers in
class ASEnterprise is identical to that of server class sql_server
(release 10.0 or later).

• In all other cases, when the Adaptive Server receives notification to
commit a transaction, the Distributed Transaction Manager issues a
CommitXact RPC to all remote participants having a server class of
ASEnterprise.

Server Class ASAnywhere •Transaction processing for servers in class
ASAnywhere is identical to that of server class sql_server (release 10.0 or
later).

commit transaction

104

Server Class ASIQ •Transaction processing for servers in class ASIQ is
identical to that of server class sql_server (release 10.0 or later).

Server Class sql_server •When Component Integration Services receives
notification to commit a transaction, it checks the TRANSACTION
ACTIVE state of all remote participants associated with the client
application. If there is more than one remote server involved in a
transaction, Component Integration Services first sends a prepare
transaction command to each connection with an active transaction. If all
remote servers respond with no error, Component Integration Services
sends a commit transaction command to each server involved in the
transaction. If all remote servers again respond with no error, Component
Integration Services notifies the Adaptive Server that it can commit local
work.

This process applies to release 10.0 or later. Transaction handling is the
same as server class db2, described below, if the server represented by
server class sql_server is:

• Pre-release 10.0 SQL Server

• Microsoft SQL Server (any version)

• Sybase IQ

• OmniConnect 10.1.2

Server Class direct_connect •Transaction processing for servers in class
direct_connect is identical to that of server class sql_server (release 10.0
or later).

Server Class db2 •Transactions are supported only at the statement level for
servers in class db2. When the internal state of a client connection
indicates that there is an active transaction, a begin transaction command
precedes all insert, update and delete commands. Component Integration
Services issues a commit or rollback transaction (depending on the
success or failure of the statement) immediately after the statement is
complete.

Server Class generic •Transactions are supported only at the statement
level for servers in class generic. When the internal state of a client
connection indicates that there is an active transaction, the RPC
gen_begin_xact precedes all insert, update and delete commands.
Component Integration Services issues a gen_commit_xact or
gen_rollback_xact RPC (depending on the success or failure of the
statement) immediately after the statement is complete.

See also See Also

CHAPTER 4 Server Classes

105

commit in the Adaptive Server Reference Manual.

connect to...disconnect

106

connect to...disconnect
Description Connects to the specified server to establish a passthrough-mode connection;

takes the connection out of passthrough mode.

Syntax connect to server_name
disconnect

Usage Usage

• connect to specifies the server to which a passthrough connection is
required. Passthrough mode enables you to perform native operations on
a remote server.

• server_name must be the name of a server in the sysservers table, with its
server class and network name defined.

• When establishing a connection to server_name on behalf of the user,
Component Integration Services uses one of the following identifiers:

- A remote login alias described in sysattributes, if present

- The user’s name and password

In either case, if the connection cannot be made to the specified server,
Adaptive Server returns an error message.

• For more information about adding remote servers, see sp_addserver.

• After making a passthrough connection, Component Integration Services
bypasses the Transact-SQL parser and compiler when subsequent
language text is received. It passes statements directly to the specified
server, and converts the results into a form that can be recognized by the
Open Client interface and returned to the client program.

• To take the connection created by the connect to command out of
passthrough mode, use the disconnect command. You can use this
command only after the connection has been made using connect to.

• disconnect does not actually cause the termination of the connection to
the remote server; instead, it simply takes the connection out of
passthrough mode, leaving the connection available for subsequent DDL
or DML statements that are processed normally by the ASE query
processor.

• The disconnect command can be abbreviated to disc.

• The disconnect command returns an error unless connect to has been
previously issued and the server is connected to a remote server.

CHAPTER 4 Server Classes

107

Server Class ASEnterprise •When the disconnect command is issued, CIS
will forward the disconnect command to the remote server, to take it out
of passthrough mode. If not in passthrough mode, syntax errors may occur,
but they are ignored by CIS and not forwarded to the client.

Server Class ASAnywhere •No interaction occurs with ASAnywhere when
the connect or disconnect commands are issued.

Server Class ASIQ •No interaction occurs with ASIQ when the connect or
disconnect commands are issued.

Server Class sql_server No interaction occurs with sql_server when the
connect or disconnect commands are issued.

Server Class direct_connect When the connect command is issued using a
server in class direct_connect, the direct_connect is sent an RPC:

sp_thread_props “passthru mode”, 1

• When the disconnect command is issued, and the server for which a
passthrough-mode connection has been established is a direct_connect,
the direct_connect is sent an RPC:

sp_thread_props “passthru mode”, 0

Server Class db2 •No interaction occurs with db2 when the connect or
disconnect commands are issued.

Server Class generic No interaction occurs with generic when the connect
or disconnect commands are issued.

See also See Also

commit in the Adaptive Server Reference Manual.

create database

108

create database
Description Creates a new database

Syntax create database database_name
[on {default | database_device} [= size]
 [, database_device [= size]]...]
[log on database_device [= size]
 [, database_device [= size]]...]
[with override]
[with default_location = “pathname”]
[for proxy_update]
[for load]

Usage Usage

• This command creates a new database within Adapter Server Enterprise.
The new syntax with default_location = pathname and for proxy_update
have been added to allow automatic creation of proxy tables representing
tables and views found in a remote location.

• If the clause with default_location = pathname is used, the pathname is
stored in master.dbo.sysdatabases.default_loc, and serves the same
purpose as the default location added via the system stored procedure
sp_defaultloc

• If the clause for proxy_update is used, the with default_location =
pathname clause must also be used. This clause indicates that the database
is to be a proxy database, and all tables created in it will become proxy
tables, referencing objects contained at the default location.

• When a database is created as a proxy database, and no device or size
specification is included in the syntax, the default size will be calculated
based on the number of proxy tables that it will be expected to contain. The
formula for calculating the number of 2k pages for the database is as
follows:

pages = #rmt_tbls * 32/* 4 extents per table */
overhead = (pages * 1.1) /* add 10% */
if overhead < 500 pages

then overhead = 500 pages
total_pages = pages + overhead

• The new database is placed on the default device, if no device name is
specified.

CHAPTER 4 Server Classes

109

• After the database is created, but before the command is complete, the
presence of the for proxy_update clause will instruct CIS to create a
proxy table in the new database for each remote table or view. When the
create database command is finished, the newly created database will be
populated with proxy tables representing all user tables and views found
at the remote location.

See also See Also

alter database in the Adaptive Server Reference Manual.

create existing table

110

create existing table
Description Creates a new proxy table representing an existing object in a remote server.

Syntax create existing table [database.[owner].]table_name (column_name datatype
 [default {constant_expression | user | null}]
 {[{identity | null | not null}]
 | [[constraint constraint_name]
 {{unique | primary key}
 [clustered | nonclustered]
 [with {fillfactor |max_rows_per_page}= x]
 [on segment_name]
 | references [[database.]owner.]ref_table
 [(ref_column)]
 | check (search_condition)}]}...

 | [constraint constraint_name]
 {{unique | primary key}
 [clustered | nonclustered]
 (column_name [{, column_name}...])
 [with {fillfactor |max_rows_per_page}= x]
 [on segment_name]
 | foreign key (column_name [{, column_name}...])
 references [[database.]owner.]ref_table
 [(ref_column [{, ref_column}...])]
 | check (search_condition)}

 [{, {next_column | next_constraint}}...])

 [with max_rows_per_page = x] [on segment_name]
[external {table | procedure}]
[at “pathname”]

Usage Usage

• Adaptive Server processes the create existing table command as if the
table being created is a new local table.

• After creating the local table, Adaptive Server passes the create existing
table command to Component Integration Services, with the external
location for the existing remote object.

Component Integration Services verifies that the table exists by issuing the
sp_tables RPC to the remote server that owns the existing object.

• Component Integration Services verifies the column list by sending the
sp_columns RPC to the remote server. Column names, datatypes,
lengths, identity property, and null properties are checked for the
following:

CHAPTER 4 Server Classes

111

• Datatypes in the create existing table command must match or be
convertible to the datatypes of the column on the remote location. For
example, a local column datatype might be defined as money, while
the remote column datatype might be numeric. This is a legal
conversion, therefore, no errors are reported.

• Each column’s null property is checked. If the local column’s null
property is not identical to the remote column’s null property, a
warning message is issued, but the command is not aborted.

• Each column’s length is checked. If the length of char, varchar,
binary, varbinary, decimal and numeric columns do not match, a
warning message is issued, but the command is not aborted.

• The column names used in the syntax must match with those found at the
remote location.

• The proxy table need not contain the exact number of columns as found in
the remote table. However, all columns referenced in by the proxy table
must be found in the remote table. If the count of columns in the proxy
table is less than the actual number of columns in the remote server, then
a warning is issued, but the command is not aborted.

• The remote column name is stored in syscolumns.remote_name and is
used during query processing when a statement is forwarded to the remote
server. This name is not affected by sp_rename, so after the proxy table
is created, if any column name is changed, it won’t affect processing of
subsequent SQL commands.

• Column datatypes do not need to be identical, but they must be convertible
in both directions, or a column datatype mismatch error is raised, and the
command is aborted.

• The column length defined for columns of type char, varchar, binary, and
varbinary must match the length of the corresponding columns in the
remote table.

• Scale and precision of columns of type numeric or decimal must match the
scale and precision of the corresponding columns in the remote table.

• If the null property is not identical to the remote column’s null property, a
warning message is issued, but the command is not aborted.

Server Class ASEnterprise •Table 4-3 describes the allowable datatypes
that can be used when mapping remote Adaptive Server columns to local
proxy table columns:

create existing table

112

Table 4-3: Adaptive Server datatype conversions for create existing
table

Remote Adaptive
Server Datatype Allowable Adaptive Server Datatypes

binary(n) image, binary(n), and varbinary(n); if not image,
the length must match

bit bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n), varchar(n);
if not text, the length must match

datetime datetime and smalldatetime

decimal(p, s) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

image image

int bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

nchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n);
if not text, the length must match

numeric(p, s) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

nvarchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n);
if not text, the length must match

real bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smalldatetime datetime and smalldatetime

smallint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

text text

timestamp timestamp

tinyint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

varbinary(n) image, binary(n), and varbinary(n); if not image,
the length must match

varchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n);
if not text, the length must match

CHAPTER 4 Server Classes

113

Server Class ASAnywhere •Table 4-4 describes the allowable datatypes
that can be used when mapping remote Adaptive Server columns to local
proxy table columns:

Table 4-4: Adaptive Server Anywhere datatype conversions for create
existing table

Remote Adaptive
Server Datatype Allowable Adaptive Server Datatypes

binary(n) image, binary(n), and varbinary(n); if not
image, the length must match

bit bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n), varchar(n);
if not text, the length must match

datetime datetime and smalldatetime

decimal(p, s) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

image image

int bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

nchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n);
if not text, the length must match

numeric(p, s) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

nvarchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n);
if not text, the length must match

real bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smalldatetime datetime and smalldatetime

smallint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

text text

timestamp timestamp

tinyint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

create existing table

114

Server Class ASIQ •text and image datatypes are not supported by ASIQ.

• Other than text and image datatypes, behavior is the same as for server
class ASEnterprise

Server Class sql_server •Allowable datatype conversions are the same as
for server class ASEnterprise.

Server Class direct_connect •The RPC sp_columns queries the datatypes
of the columns in the existing table.

• Local column datatypes do not need to be identical to remote column
datatypes, but they must be convertible as shown in Table 4-5. If not, a
column type error is raised, and the command is aborted.

Table 4-5: DirectConnect datatype conversions for create existing table

varbinary(n) image, binary(n), and varbinary(n); if not image,
the length must match

varchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n);
if not text, the length must match

DirectConnect
Datatype Allowable Adaptive Server Datatypes

binary(n) image, binary(n), varbinary(n); if the length does not
match, the command is aborted

binary(16) timestamp

bit bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n) and varchar(n); if
the length does not match, the command is aborted

datetime datetime, smalldatetime

decimal(p, s) bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

image image

int bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

nchar(n) text, nchar(n), nvarchar(n), char(n) and varchar(n); if
the length does not match, the command is aborted

Remote Adaptive
Server Datatype Allowable Adaptive Server Datatypes

CHAPTER 4 Server Classes

115

• Datatype information is passed in the CS_DATAFMT structure associated
with the parameter. The following fields of the structure contain datatype
information:

• datatype – the CS_Library datatype representing the Adaptive Server
datatype. For example, CS_INT_TYPE.

• usertype – the native DBMS datatype. sp_columns passes this
datatype back to Component Integration Services during a create
existing table command as part of its result set (see sp_columns in
the Adaptive Server Reference Manual). Adaptive Server returns this
datatype in the usertype field of parameters to assist the
DirectConnect in datatype conversions.

Server Class db2 •Column names are checked in a case-insensitive manner.
If there is no match, a column name error is raised, and the command is
aborted.

Note The Adaptive Server table can contain fewer columns than the
remote table, but each column in the Adaptive Server table must have a
matching column in the remote table.

• text and image datatypes are not supported by server class db2.

numeric(p, s) bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

nvarchar(n) text, nchar(n), nvarchar(n), char(n) and varchar(n); if
the length does not match, the command is aborted

real bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

smalldatetime datetime, smalldatetime

smallint bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

text text

timestamp timestamp, binary(8), varbinary(8)

DirectConnect
Datatype Allowable Adaptive Server Datatypes

create existing table

116

• When a create existing table command is processed, the datatype for
each column specifies the type of conversion to perform between the DB2
and Adaptive Server datatypes during query processing. Table 4-6
describes the allowable Adaptive Server datatypes that can be used for
existing DB2 datatypes:

Table 4-6: DB2 datatype conversions for create existing table

DB2 Datatype Allowable Adaptive Server Datatypes

int int

smallint int, smallint, and tinyint; if length does not match,
a warning message is issued

tinyint int, smallint, and tinyint; if length does not match,
a warning message is issued

float real, float, and money

double precision real, float, and money

real real, float, and money

decimal(scale > 0) float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

decimal (scale = 0) float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

numeric (scale > 0) float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

numeric (scale = 0) float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

char char, varchar, bit, binary, varbinary, text and
image; if not text or image, length must match

char(n) for bit data binary(n), varbinary(n), and image; if not image,
length must match

varchar char, varchar, bit, binary, varbinary, text and
image; if not text or image, length must match

varchar(n) for bit data binary(n), varbinary(n), and image; if not image,
length must match

long varchar (length
truncated to 255)

char, varchar, bit, binary, varbinary, text and
image; if not text or image, length must match

date char(10), varchar(10), and datetime (time set to
12:00AM)

time char(8), varchar(8), and datetime (date set to
1/1/1900)

timestamp char(26), varchar(26), datetime, and smalldatetime

graphic Not supported

vargraphic Not supported

CHAPTER 4 Server Classes

117

• If the data contained in a long varchar column exceeds 255 bytes, it is
truncated, or, if the gateway is so configured, an error is returned.

• DB2 table names are limited to 18 characters.

• DB2 authorization IDs (owner names) are limited to 8 characters.

• The maximum string length for columns returned by DB2 is 254
characters for char and varchar datatypes. For long varchar, the length is
32,704 bytes.

• DB2 can return date values that are not within the range of the Adaptive
Server datetime datatype. DB2’s range is 0001-01-01 to 9999-12-31. The
Adaptive Server’s range is 1753-01-01 to 9999-12-31. When a date earlier
than 1753-01-01 is retrieved from DB2, it is converted to 1753-01-01.

• Check DB2 documentation for the maximum number of columns per DB2
table. This varies with the DB2 version.

Server Class generic •Column names are checked in a case-insensitive
manner. If there is no match, a column name error is raised, and the
command is aborted.

Note The Adaptive Server table can contain fewer columns than the
remote table, but each column in the Adaptive Server table must have a
matching column in the remote table.

• text, image, decimal, and numeric datatypes are not supported by the
server class generic.

• Table 4-7 illustrates datatype compatibility when the create existing table
command is processed. When the server encounters a datatype shown in
the “ODBC Datatype” column, it allows any of the datatypes shown in the
“Allowable Adaptive Server Datatypes” column. When a datatype other
than an allowable datatype is encountered, Adaptive Server returns an
error message and the create existing table command is aborted.

Table 4-7: ODBC datatype conversions for create existing table

long vargraphic Not supported

ODBC Datatype Allowable Adaptive Server Datatypes

int int

smallint smallint

tinyint tinyint

DB2 Datatype Allowable Adaptive Server Datatypes

create existing table

118

See also See Also

create existing table in the Adaptive Server Reference Manual.

float float, money, and smallmoney

double precision float, money, and smallmoney

real real, money, and smallmoney

decimal(p,s)

(scale less than 0 or precision
greater than or equal to 10)

float, money

decimal(p,s)

(scale equal to 0 or precision
greater than or equal to 10

int, float, money

numeric(p,s)

(scale less than 0 or precision
greater than or equal to 10)

float, money

numeric(p,s)

(scale equal to 0 or precision
greater than or equal to 10)

int, float, money

char(n) char(n), varchar(n) (n truncated to 255 bytes)

long varchar(n), varchar(n) char(n), varchar(n) (n truncated to 255 bytes)

date datetime (time set to 12:00AM)

time datetime (date set to 1/1/1900)

timestamp datetime

bit bit

binary(n) binary(n), varbinary(n); length must match

varbinary(n) binary(n), varbinary(n); length must match

long varbinary(n) binary(255), varbinary(255)

ODBC Datatype Allowable Adaptive Server Datatypes

CHAPTER 4 Server Classes

119

create index
Description Creates an index on one or more columns in a table.

Syntax create [unique] [clustered | nonclustered]
 index index_name
 on [[database.]owner.]table_name (column_name
 [, column_name]...)
 [with {{fillfactor | max_rows_per_page} = x,
 ignore_dup_key, sorted_data,
 [ignore_dup_row | allow_dup_row]}]
 [on segment_name]

Usage Usage

• Component Integration Services processes the create index command
when the table involved has been created as a proxy table. The actual table
resides on a remote server, and Component Integration Services forwards
the request to the remote server after Adaptive Server catalogs are updated
to represent the new index.

• Trace flag 11208 changes the behavior of the create index command. If
trace flag 11208 is turned on, Component Integration Services does not
send the create index command to the remote server. Instead, Adaptive
Server processes the command locally, as if the table on which it operates
is local. This is useful for creating an index on a proxy table that maps to
a remote view.

• Adaptive Server performs all system catalog updates in order to identify
the index. However, just as there are no data pages in the server for proxy
tables, there are no index pages.

• When Component Integration Services forwards the create index
command to a remote server, the table name used is the remote table name,
and the column names used are the remote column names. These names
may not be the same as the local proxy table names.

Server Class ASEnterprise •Component Integration Services forwards
everything except the on segment_name clause to the remote server.

Server Class ASAnywhere •Component Integration Services forwards
everything except the on segment_name clause to the remote server.

Server Class ASIQ •Component Integration Services forwards everything
except the on segment_name clause to the remote server.

Server Class sql_server •For pre-release 10.0 SQL Server or Microsoft
SQL Server 6.5, neither the max_rows_per_page or on segment_name
clause is forwarded to the remote server.

create index

120

Server Class direct_connect •When the language capability is set to
“Transact-SQL”, Component Integration Services forwards all syntax
except the max_rows_per_page and on segment_name clauses to the
remote server.

• When the language capability is set to “DB2”, the behavior is the same as
for server class db2.

• The DirectConnect must either translate the Sybase extensions to
equivalent native syntax or ignore them.

Server Class db2 •Component Integration Services does not forward the
following clauses to the remote server:

• on segment_name

• max_rows_per_page

• ignore_dup_key

• ignore_dup_row

• allow_dup_row

• Component Integration Services converts the fillfactor option to pctfree
and then forwards it to the remote server.

Server Class generic •Component Integration Services forwards all syntax
except the max_rows_per_page and on segment_name clauses to the
remote server.

• The Generic Access Module must either translate the Sybase extensions to
equivalent native syntax or ignore them.

See also See Also

create index in the Adaptive Server Reference Manual.

CHAPTER 4 Server Classes

121

create proxy_table
Description Creates a proxy table without specifying a column list. Component Integration

Services derives the column list from the metadata it obtains from the remote
table.

Syntax create proxy_table table_name
[external table] at “pathname”

Usage Usage

• create proxy_table is a variant of the create existing table command.
You use create proxy_table to create a proxy table, but (unlike create
existing table) you do not specify a column list. CIS derives the column
list from the metadata it obtains from the remote table.

• The location information provided by the at keyword specifies the
pathname to the remote object (table or view).

• If the remote server object does not exist, the command is rejected with an
error message.

• If the remote object exists, column metadata is obtained from the remote
server, and an internal create existing table command is processed.

• If the remote server is case insensitive (as is the case with DB2, Oracle,
perhaps others), then the case of the generated table and column names is
determined by the case of the table_name used with the create proxy_table
statement:

• if table_name is lower case, the generated proxy table name is also
lower case, as are all of its columns

• if table_name is uppercase, the generated proxy table name is also
upper case, as are all of its columns

See also See Also

create table and create existing table in the Adaptive Server Reference
Manual.

create table

122

create table
Description Creates new tables and optional integrity constraints; specifies a locking

scheme for the table being created; specifies ascending or descending index
order when creating referential integrity constraints that depend on indexes;
specifies the expected row size, to reduce row forwarding; specifies a ratio of
empty pages to be left for each filled page; allows you to map the table to a
table, view, or procedure at a remote location.

Syntax create table [database.[owner].]table_name (column_name datatype
 [default {constant_expression | user | null}]
 {[{identity | null | not null}]

 [off row | in row]
 | [[constraint constraint_name]
 {{unique | primary key}
 [clustered | nonclustered] [asc | desc]
 [with { { fillfactor = pct
 | max_rows_per_page = num_rows }
 , reservepagegap = num_pages }]
 [on segment_name]
 | references [[database.]owner.]ref_table
 [(ref_column)]
 | check (search_condition)}]}...

| [constraint constraint_name]
 {{unique | primary key}
 [clustered | nonclustered]
 (column_name [asc | desc]

[{, column_name [asc | desc]}...])
 [with { {fillfactor = pct

 | max_rows_per_page = num_rows },
reservepagegap = num_pages }]

 [on segment_name]
 |foreign key (column_name [{, column_name}...])
 references [[database.]owner.]ref_table
 [(ref_column [{, ref_column}...])]
 | check (search_condition) ... }
[{, {next_column | next_constraint}}...])
[lock {datarows | datapages | allpages }]
[with { max_rows_per_page = num_rows ,

exp_row_size = num_bytes ,
reservepagegap = num_pages }]

[on segment_name]
[[external {table | procedure}] at “pathname”]]

Usage Usage

• If the table being created is mapped to a remote location, a proxy table is
created. A proxy table is identical to a local table, except that the
sysobjects.sysstat2 column contains a status flag that indicates the table is
mapped to an external location.

CHAPTER 4 Server Classes

123

• The external location must be previously defined using the at pathname
clause.

• After the Adaptive Server processes the create table command, it notifies
Component Integration Services of the need to forward the command to
the remote location (if a location has been previously specified).

Component Integration Services reconstructs the SQL necessary to create
the table, and forwards the SQL to the remote server. It does not forward
all the original syntax to the remote server. The following clauses are
processed by Adaptive Server:

• on segment name

• check constraints

• default

• with max_rows_per_page

• Trace flag 11213 changes the behavior of the create table command.
Referential constraints and unique or primary key constraints are
forwarded to the remote server unless trace flag 11213 is turned on, in
which case they are processed locally.

• For each column, the column name, datatype, length, identity property,
and null property are reconstructed from the original statement.

• Component Integration Services passes a NULL char column as a NULL
varchar column.

• Component Integration Services passes a NULL binary column as a
NULL varbinary column.

Server Class ASEnterprise •Component Integration Services passes the
datatype of each column to the remote server without conversion.

Server Class ASAnywhere •Component Integration Services passes the
datatype of each column to the remote server without conversion.

Server Class ASIQ •Component Integration Services passes the datatype of
each column to the remote server without conversion.

Server Class sql_server •Component Integration Services passes the
datatype of each column to the remote server without conversion.

Server Class direct_connect •Component Integration Services
reconstructs the create table command and passes commands to the
targeted DirectConnect. The gateway transforms the commands into a
form that the underlying DBMS recognizes.

create table

124

• Some DirectConnects support DB2 syntax mode, which is described in the
DirectConnect documentation. When the DirectConnect enables DB2
syntax mode, Component Integration Services constructs DB2 SQL
syntax and converts the column to a datatype DB2 supports.

• Adaptive Server datatypes are converted to either the DirectConnect or
DB2 syntax mode datatypes shown in Table 4-8, depending on whether the
DirectConnect supports DB2 syntax mode

Table 4-8: DirectConnect datatype conversions for create table

Adaptive
Server
 Datatype

DirectConnect
 Default Datatype

DirectConnect DB2
Syntax Mode Datatype

binary(n) binary(n) char(n) for bit data

bit bit char(1)

char char char

datetime datetime timestamp

decimal(p, s) decimal(p, s) decimal(p, s)

float float float

image image varchar(n) for bit data; the
value of n is determined by the
global variable @@textsize

int int int

money money float

numeric(p, s) numeric(p, s) decimal(p, s)

nchar(n) nchar(n) graphic(n)

nvarchar(n) nvarchar(n) vargraphic(n)

real real real

smalldatetime smalldatetime timestamp

smallint smallint smallint

smallmoney smallmoney float

timestamp timestamp varbinary(8)

tinyint tinyint smallint

text text varchar(n); the value of n is
determined by the global
variable @@textsize

varbinary(n) varbinary(n) varchar(n) for bit data

varchar(n) varchar(n) varchar(n)

CHAPTER 4 Server Classes

125

Server Class db2 Table 4-9 shows the datatype conversions that are
performed when a create table command is processed. Adaptive Server
datatypes are converted to the DB2 datatypes shown.

Table 4-9: DB2 datatype conversions for create table

Server Class generic •CIS passes the datatype name of each column to the
Generic Access Module without conversion.

• The generic server class does not allow text, image, decimal or numeric
datatypes. Use of these datatypes results in an error.

See also See Also

create table in the Adaptive Server Reference Manual.

Adaptive Server
Datatype DB2 Datatype

binary(n) char(n) for bit data, where n <= 254

bit char(1)

char(n) char(n), where n <= 254

datetime timestamp

decimal(p, s) decimal(p, s)

float float

image Not supported

int int

money float

nchar char(n)

nvarchar varchar(n)

numeric(p, s) decimal(p, s)

real real

smalldatetime timestamp

smallint smallint

smallmoney float

tinyint smallint

text Not supported

varbinary(n) varchar(n) for bit data, where n <=254

varchar(n) varchar(n), where n <= 254

create trigger

126

create trigger
Description Creates a trigger, a type of stored procedure that is often used for enforcing

integrity constraints. A trigger executes automatically when a user attempts a
specified data modification statement on a specified table.

Syntax create trigger [owner.]trigger_name
on [owner.]table_name
for {insert, update, delete}
as SQL_statements

Or, using the if update clause:

create trigger [owner.]trigger_name
on [owner.]table_name
for {insert, update}
as
 [if update (column_name)
 [{and | or} update (column_name)]...]
 SQL_statements
 [if update (column_name)
 [{and | or} update (column_name)]...
 SQL_statements]...

Usage Usage

• When a trigger is created on a proxy table, it will execute after an insert,
delete or update statement on that proxy table completes. However, the
special tables inserted and deleted, which normally are views into the local
transaction log, will not contain any data, since changes to remote data are
not logged locally.

• Some direct_connects have the ability to support the special tables inserted
and deleted. If this is the case, CIS will forward references to these tables
when found within a trigger. The reference will be constructed as in this
example:

select ...
from dbname.owner.tablename inserted,

dbname.owner.tablename deleted
where inserted.id = deleted.id

• The names for the inserted and deleted tables are passed to the
direct_connect as alias names, and the table name in the from clause is the
actual name of the table in the DBMS accessed by the DirectConnect.

Server Class ASEnterprise •Servers in this class do not support access to
remote inserted and deleted tables.

Server Class ASAnywhere •Servers in this class do not support access to
remote inserted and deleted tables.

CHAPTER 4 Server Classes

127

Server Class ASIQ •Servers in this class do not support access to remote
inserted and deleted tables.

Server Class sql_server •Servers in this class do not support access to
remote inserted and deleted tables.

Server Class direct_connect •The ability to support inserted and deleted
tables is determined by a capability. If enabled, CIS will forward syntax
referencing these tables to the DirectConnect.

• With version 12.0, the only DirectConnect supporting this capability is the
DirectConnect for Oracle.

Server Class db2 •Servers in this class do not support access to remote
inserted and deleted tables.

Server Class genereic •Servers in this class do not support access to remote
inserted and deleted tables.

See also See Also

deallocate cursor

128

deallocate cursor
Description Makes a cursor inaccessible and releases all memory resources committed to

that cursor.

Syntax deallocate cursor cursor_name

Usage Usage

• If the cursor specified by cursor_name contains references to proxy tables,
Adaptive Server notifies Component Integration Services to deallocate its
remote cursors for those tables.

• If the remote cursor is not closed, Component Integration Services closes
and deallocates it. If the remote cursor is already closed, no additional
actions are taken.

• Component Integration Services uses Client-Library to manage cursor
operations to a remote server. When Component Integration Services
receives a deallocate cursor command and the cursor has not been
explicitly closed with a close command, Component Integration Services
uses the following Client-Library functions to interact with the remote
server:

ct_cursor(command, CS_CURSOR_CLOSE, NULL,
 CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

ct_cursor(command, CS_CURSOR_DEALLOC, NULL,
 CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

• If the cursor contains references to more than one proxy table, Component
Integration Services must deallocate a remote cursor for each server
represented by the proxy tables.

See also See Also

close, declare cursor, fetch, open in this chapter.

deallocate cursor in the Adaptive Server Reference Manual.

CHAPTER 4 Server Classes

129

declare cursor
Description Defines a cursor.

Syntax declare cursor_name cursor
 for select_statement
[for {read only | update [of column_name_list]}]

Usage Usage

• If the cursor specified by cursor_name contains references to proxy tables,
Adaptive Server notifies Component Integration Services to establish a
connection to the remote servers referenced by the proxy tables.

A separate connection is required for each server represented by all proxy
tables. For example, if all proxy tables in the cursor reference the same
remote server, only one connection is required while the declare cursor
command is processed. However, if two or more servers are referenced by
the proxy tables, a separate connection to each server is required.

See also See Also

close, deallocate cursor, fetch, open in this chapter.

declare cursor in the Adaptive Server Reference Manual.

delete

130

delete
Description Removes rows from a table.

Syntax delete [from] [[database.]owner.]{view_name|table_name}
 [where search_conditions]

delete [[database.]owner.]{table_name | view_name}
 [from [[database.]owner.]{view_name|table_name
 [(index index_name [prefetch size][lru|mru])]}
 [, [[database.]owner.]{view_name|table_name
 (index index_name [prefetch size][lru|mru])]}]...]
 [where search_conditions]

delete [from] [[database.]owner.]{table_name|view_name}
 where current of cursor_name

Usage Usage

• Component Integration Services processes the delete command when the
table on which it operates has been created as a proxy table. Component
Integration Services forwards the entire request (or part of it) to the server
that owns the actual object.

• Component Integration Services executes the delete command using one
of two methods:

a The entire command is forwarded to the remote server as a single
statement in close to its original syntax. If the syntax and remote
capabilities match, the entire statement is forwarded and processed
remotely. This is referred to as quickpass mode.

b If the entire command cannot be forwarded to a remote server,
Component Integration Services declares and opens one or more
cursors in update mode, and begins a scan on the remote table. Each
cursor forwards as much of the original statement’s predicates to the
remote server as possible. For each row fetched that meets the search
criteria, a positioned delete is executed.

• When Component Integration Services forwards the delete command to a
remote server, the table name used is the remote table name, and the
column names used are the remote column names. These names may not
be the same as the local proxy table names.

• Component Integration Services generally passes the original delete
syntax to remote servers as a single statement, but the following conditions
will likely cause the statement to be executed using method 2, above:

• The statement contains multiple tables that are not located in the same
remote server

CHAPTER 4 Server Classes

131

• The statement contains local tables (including temporary tables)

• The statement contains case expressions

• The statement contains text or image columns

• The statement contains certain referential integrity checks

• The statement contains system functions in the predicate list

• The statement contains syntax that the remote server does not support

• The format involving where current of is never forwarded to a remote
server and causes the statement to be executed using method 2 above.

• If Component Integration Services cannot pass the entire statement to a
remote server, a unique index must exist on the table.

Server Class ASEnterprise •If Component Integration Services cannot
forward the original query without alteration, it performs the delete using
method 2.

Server Class ASAnywhere •If Component Integration Services cannot
forward the original query without alteration, it performs the delete using
method 2.

Server Class ASIQ •If Component Integration Services cannot forward the
original query without alteration, it performs the delete using method 2.

Server Class sql_server •If Component Integration Services cannot
forward the original query without alteration, it performs the delete using
method 2.

Server Class direct_connect •The syntax forwarded to servers of class
direct_connect is dependent on the capabilities negotiation which occurs
when Component Integration Services first connects to the remote
DirectConnect. Examples of negotiable capabilities include: subquery
support, group by support, and built-in support.

• A DirectConnect can request that the delete command be generated in
DB2 syntax.

• Component Integration Services passes data values as parameters to either
a cursor or a dynamic SQL statement. Language statements can also be
used if the DirectConnect supports it. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

delete

132

Server Class db2 •Server’s of class db2 do not contain the capabilities
negotiation features of server class direct_connect, so the syntax passed to
the remote server is simpler than that allowed by Transact-SQL. The
syntax does not contain the following:

• Search conditions containing subqueries, group by, or order by
clauses

• Transact-SQL built-in functions

• Transact-SQL operators (such as bitwise operators)

• Syntax not allowed by DB2

Component Integration Services processes the delete command using
method 2, described above, when the statement is complex.

• If the server is a DB2 system, use traceflag 11215 to instruct Component
Integration Services that the remote server is capable of handling all DB2
syntax. This assumption is not made automatically because not all
gateways using the db2 server class are actually connected to DB2
systems. When trace flag 11215 is turned on, quickpass mode is used
unless the following conditions exist:

• The statement cannot be expressed in DB2 syntax

• The statement contains outer joins

• The statement contains like clauses with Sybase extensions

• The statement contains built-in functions that are not supported by
DB2

Server Class generic •Server’s of class generic do not contain the
capabilities negotiation features of server class direct_connect, so the
syntax passed to the remote server is simpler than that allowed by
Transact-SQL. The syntax does not contain the following:

• Search conditions containing subqueries, group by, or order by
clauses

• Transact-SQL built-in functions

• Transact-SQL operators (such as bitwise operators)

• Syntax not allowed by the generic server class

• Complex statements cause Component Integration Services to perform a
select statement followed by the delete statement when qualifying rows
are found.

CHAPTER 4 Server Classes

133

See also See Also

delete in the Adaptive Server Reference Manual.

drop database

134

drop database
Description Removes one or more databases from Adaptive Server.

Syntax drop database database_name [, database_name]...

Usage Usage

• For each database being dropped, Component Integration Services scans
sysobjects to check for proxy tables in the database. Each proxy table that
was not created with the existing keyword is dropped in the remote server
that owns the object.

Server Class ASEnterprise •Component Integration Services issues a drop
table command for each table that was not created with the existing
keyword.

Server Class ASAnywhere •Component Integration Services issues a drop
table command for each table that was not created with the existing
keyword.

Server Class ASIQ •Component Integration Services issues a drop table
command for each table that was not created with the existing keyword.

Server Class sql_server •Component Integration Services issues a drop
table command for each table that was not created with the existing
keyword.

Server Class direct_connect •Component Integration Services issues a
drop table command for each table that was not created with the existing
keyword.

Server Class db2 •Component Integration Services issues a drop table
command for each table that was not created with the existing keyword.

Server Class generic •Component Integration Services issues the following
RPC for each proxy table that was not created with the existing keyword:

gen_drop_table table_name, owner_name,
 database_name

See also See Also

drop database in the Adaptive Server Reference Manual.

CHAPTER 4 Server Classes

135

drop index
Description Removes an index from a table in the current database.

Syntax drop index table_name.index_name
 [, table_name.index_name]...

Usage Usage

• Component Integration Services processes the drop index command
when the table involved has been created as a proxy table. The actual table
and index reside on a remote server. Component Integration Services
forwards the request to the remote server, and removes the index from the
proxy table.

• When Component Integration Services forwards the drop index
command to a remote server, the table name used is the remote table name,
and the index names used are the remote index names. These names may
not be the same as the local proxy table names.

• If multiple indexes are dropped in a single command, each index is sent as
an individual drop index command.

• Trace flag 11208 changes the behavior of the drop index command. If
trace flag 11208 is turned on, the drop index command is not sent to the
remote server. Instead, Adaptive Server processes the command locally, as
if the table on which it operates is local. This is useful for synchronizing
the local Adaptive Server schema with the schema of the remote database.

Server Class ASEnterprise •Component Integration Services forwards the
following drop index syntax to a remote server configured as class
ASEnterprise:

drop index table_name.index_name

Component Integration Services precedes this statement with a use
database command since the drop index syntax does not allow you to
specify the database name.

Server Class ASAnywhere •Component Integration Services forwards the
following drop index syntax to a remote server configured as class
ASAnywhere:

drop index table_name.index_name

Component Integration Services precedes this statement with a use
database command since the drop index syntax does not allow you to
specify the database name.

drop index

136

Server Class ASIQ •Component Integration Services forwards the
following drop index syntax to a remote server configured as class ASIQ:

drop index table_name.index_name

Component Integration Services precedes this statement with a use
database command since the drop index syntax does not allow you to
specify the database name.

Server Class sql_server •Component Integration Services forwards the
following drop index syntax to a remote server configured as class
sql_server:

drop index table_name.index_name

Component Integration Services precedes this statement with a use
database command since the drop index syntax does not allow you to
specify the database name.

Server Class direct_connect •Component Integration Services forwards
the following drop index syntax to a remote server configured as class
direct_connect:

drop index table_name.index_name

Server Class db2 •Component Integration Services forwards the following
drop index syntax to a remote server configured as class db2:

drop index index_name

Server Class generic •Component Integration Services forwards the
following RPC to a remote server configured as class generic:

gen_drop_index index_name, table_name,owner_name,
database_name

See also See Also

drop index in the Adaptive Server Reference Manual.

CHAPTER 4 Server Classes

137

drop table
Description Removes a table definition and all of its data, indexes, triggers, and

permissions from the database.

Syntax drop table [[database.]owner.]table_name
 [, [[database.]owner.]table_name]...

Usage Usage

• Component Integration Services processes the drop table command when
the table on which it operates has been created as a proxy table.
Component Integration Services forwards the entire request (or part of it)
to the server that owns the actual object if the table was not created with
the existing keyword.

• When Component Integration Services forwards the drop table command
to a remote server, the table name used is the remote table name. This
name may not be the same as the local proxy table name.

• If multiple tables are dropped in a single command, each table is sent as an
individual drop table command.

• A table in use by another user or process cannot be dropped and an error
stating that the table is in use is returned.

Server Class ASEnterprise •Component Integration Services forwards the
following drop table syntax to a remote server configured as class
ASEnterprise:

drop table database.owner.table_name

Server Class ASAnywhere •Component Integration Services forwards the
following drop table syntax to a remote server configured as class
ASAnywhere:

drop table database.owner.table_name

Server Class ASIQ •Component Integration Services forwards the
following drop table syntax to a remote server configured as class ASIQ:

drop table database.owner.table_name

Server Class sql_server •Component Integration Services forwards the
following drop table syntax to a remote server configured as class
sql_server:

drop table database.owner.table_name

drop table

138

Server Class direct_connect •Component Integration Services requests a
capabilities response from a remote server with server class
direct_connect, but support for drop table is not optional. The behavior of
the DirectConnect is database dependent.

Server Class db2 •Component Integration Services forwards the following
drop table syntax to a remote server configured as class db2:

drop table owner.table_name

Server Class generic •Component Integration Services forwards the
following RPC to a remote server configured as class generic:

gen_drop_table table_name, owner, database

See also See Also

drop table in the Adaptive Server Reference Manual.

CHAPTER 4 Server Classes

139

execute
Description Runs a system procedure or a user-defined stored procedure.

Syntax [execute] [@return_status =]
 [[[server.]database.]owner.]procedure_name[;number]
 [[@parameter_name =] value |
 [@parameter_name =] @variable [output]
 [,[@parameter_name =] value |
 [@parameter_name =] @variable [output]...]]
 [with recompile]

Usage Usage

• When the execute command is used to issue an RPC to a remote server,
Adaptive Server issues the RPC via one of two methods. The method
used to issue the RPC determines whether the work performed by the RPC
can be part of an on-going transaction. The two methods are as follows:

a The RPC is issued via the Adaptive Server’s site handler. This is the
Adaptive Server’s default method of issuing RPCs. In this case, the
RPC cannot be part of an on-going transaction.

b The RPC is issued via Component Integration Services. In this
case, the RPC can be part of an on-going transaction. To issue RPCs
using this method, cis rpc handling must be turned on. This is done
via the set command or the sp_configure system procedure.

See also See Also

“RPC Handling and Component Integration Services” on page 67.

set in this chapter.

execute in the Adaptive Server Reference Manual.

fetch

140

fetch
Description Returns a row or a set of rows from a cursor result set.

Syntax fetch cursor_name [into fetch_target_list]

Usage Usage

• When the first fetch is received, Component Integration Services
constructs the query defined by the declare cursor command and sends it
to the remote server.

If the remote server supports Client-Library cursors, Component
Integration Services takes the following steps:

a Declares a cursor:

ct_cursor(command, CS_CURSOR_DECLARE...)

b Establishes the cursor row count:

ct_cursor(command, CS_CURSOR_ROWS,...
cursor_row_count)

c Opens a Client-Library client cursor to the remote server:

ct_cursor(command, CS_CURSOR_OPEN...)

If the remote server does not support Client-Library cursors, Component
Integration Services sends a language request to the server. This may
require an additional connection to that server.

• If the declare cursor command included a for update clause, the cursor
row count is set to 1; otherwise, it is set to the value of the configuration
parameter cis_cursor_rows.

• After the cursor is opened or the language request is sent, Component
Integration Services issues a Client-Library ct_fetch command to
obtain the first row. Client-Library array binding is used to establish the
buffer in which to place the fetched results, whether Client-Library cursors
or language requests are used to generate the fetchable results. The number
of rows that are buffered by a single fetch is determined by the cursor row
count discussed above.

Subsequent fetch requests retrieve rows from the buffered results, until the
end of the buffer is reached. At that time, Component Integration
Services issues another Client-Library ct_fetch command to the remote
server.

• A fetch against a cursor that has no remaining rows in its result set causes
Component Integration Services to close the remote cursor.

CHAPTER 4 Server Classes

141

Server Class ASEnterprise If the cursor is read only, Component
Integration Services sends a language request to the remote server when
the first fetch is received after the cursor is opened. Otherwise, Component
Integration Services declares a cursor to the remote server by means of
Client-Library.

Server Class ASAnywhere •Handling of the fetch statement is the same as
for ASEnterprise.

Server Class ASIQ •Component Integration Services sends a
language request to the remote server when the first fetch is requested
after the cursor is opened.

Server Class sql_server •For pre-version 10.0 SQL Server, Component
Integration Services sends a language request to the remote server
when the first fetch is received after the cursor is opened.

• For version 10.0 or later servers, Component Integration Services declares
a cursor to the remote server by means of Client-Library.

Server Class direct_connect •Component Integration Services treats
servers in class direct_connect as if they were version 10.0 or later of class
sql_server.

Server Class db2 •Component Integration Services sends a language
request to the remote server when the first fetch is requested after the
cursor is opened.

Server Class generic •Cursors are not supported by server class generic.
Component Integration Services sends a language request to the
remote server when the first fetch is requested.

• The configuration parameter cis cursor rows determines how many rows
are returned from a single fetch sent to the remote server. If this number is
greater than 1, the rows are buffered by Client-Library. Subsequent fetch
requests retrieves rows from the buffer until it is empty, at which time
Component Integration Services issues another fetch to the remote
server.

See also See Also

close, deallocate cursor, declare cursor, open in this chapter.

fetch in the Adaptive Server Reference Manual.

Functions

142

Functions
Description The following section defines the compatibility of the CIS server classes with

the built-in ASE functions.

Support for Functions
within Component
Integration Services

When a SQL statement such as a select, insert, delete or update contains a
built-in function, CIS has to determine whether or not the function can be
forwarded to the remote server, or if it must be evaluated within the local server
using remote data.

Functions are only sent to a remote server if the statement containing them can
be handled by quickpass mode (see the select command).

In the tables shown below, support for function by server class is indicated by
a ‘Y’; an ‘N’ indicates no support is provided, and ‘C’ indicates support for it
is determined by capabilities of the underlying DBMS (often the case for
DirectConnects).

Aggregate Functions The aggregate functions generate summary values that appear as new columns
in the query results. The aggregate functions are:

Table 4-10: Server Class Support for Aggregate Functions

Datatype Conversion
Functions

Datatype conversion functions change expressions from one datatype to
another and specify new display formats for date/time information. The
datatype conversion functions are:

Table 4-11: Server Class Support for Datatype Conversion Functions

Date Functions The date functions manipulate values of the datatype datetime or
smalldatetime. Note that the getdate() function is always expanded by the local
server; the presence of this builtin function will not cause a query to be
eliminated from quickpass mode optimizations, however.

Function ASE ASA ASIQ sql_serv dir_con db2 generic

avg Y Y Y Y C Y N

count Y Y Y Y C Y N

max Y Y Y Y C Y N

min Y Y Y Y C Y N

sum Y Y Y Y C Y N

Function ASE ASA ASIQ sql_serv dir_con db2 generic

convert() Y Y Y Y C N N

inttohex() Y Y N Y C N N

hextoint() Y Y N Y C N N

CHAPTER 4 Server Classes

143

Table 4-12: Server Class Support for Date Functions

Mathematical
Functions

Mathematical functions return values commonly needed for operations on
mathematical data. Mathematical function names are not keywords.

Each function also accepts arguments that can be implicitly converted to the
specified type. For example, functions that accept approximate numeric types
also accept integer types. Adaptive Server automatically converts the argument
to the desired type

Table 4-13: Server Class Support for Mathematical Functions

Function ASE ASA ASIQ sql_serv dir_con db2 generic

dateadd Y Y Y Y C N N

datediff Y Y Y Y C N N

datename Y Y N Y C N N

datepart Y Y Y Y C N N

Function ASE ASA ASIQ sql_serv dir_con db2 generic

abs Y Y Y Y C N N

acos Y Y N Y C N N

asin Y Y N Y C N N

atan Y Y N Y C N N

atn2 Y Y N Y C N N

ceiling Y Y Y Y C N N

cos Y Y N Y C N N

cot Y Y N Y C N N

degrees Y Y N Y C N N

exp Y Y N Y C N N

floor Y Y Y Y C N N

log Y Y N Y C N N

log10 Y Y N Y C N N

pi Y Y N Y C N N

power Y Y N Y C N N

radians Y Y N Y C N N

rand Y Y Y Y C N N

round Y Y N Y C N N

sign Y Y N Y C N N

sin Y Y N Y C N N

sqrt Y Y Y Y C N N

tan Y Y N Y C N N

Functions

144

Security Functions Security functions return security-related information.The security functions
are:

Table 4-14: Server Class Support for Security Functions

String Functions String function operate on binary data, character strings, and expressions. The
string functions are:

Table 4-15: Server Class Support for String Functions

System Functions System functions return special information from the database. The system
functions are:

Table 4-16: Server Class Support for System Functions

Function ASE ASA ASIQ sql_serv dir_con db2 generic

ic_sec_ser
vice_on()

N N N N N N N

show_sec_
services)

N N N N N N N

Function ASE ASA ASIQ sql_serv dir_con db2 generic

ascii Y Y N Y C N N

char Y Y N Y C N N

charindex Y Y N Y C N N

char_lengt Y Y N Y C N N

difference Y Y Y Y C N N

lower Y Y Y Y C N N

ltrim Y Y Y Y C N N

patindex N N N N N N N

replicate Y Y N Y C N N

reverse Y N N Y Y N N

right Y Y Y Y C N N

rtrim Y Y Y Y C N N

soundex Y N Y Y C N N

space Y Y N Y C N N

str Y Y N Y C N N

stuff Y Y N Y C N N

substring Y Y Y Y C N N

upper Y Y Y Y C N N

Function ASE ASA ASIQ sql_serv dir_con db2 generic

col_length Y Y N Y C N N

col_name Y Y N Y C N N

CHAPTER 4 Server Classes

145

Text and Image
Functions

Text and image functions operate on text and image data. The text and image
functions are:

Table 4-17: Server Class Support for Text and Image Functions

curunreservedp
gs

N N N N N N N

data_pgs N N N N N N N

datalength Y Y N Y C N N

db_id N N N N N N N

db_name N N N N N N N

host_id N N N N N N N

host_name N N N N N N N

index_col N N N N N N N

isnull Y Y N Y N N N

lct_admin N N N N N N N

mut_excl_roles N N N N N N N

object_id N N N N N N N

object_name N N N N N N N

proc_role N N N N N N N

ptn_data_pgs N N N N N N N

reserved_pgs N N N N N N N

role_contain N N N N N N N

role_id N N N N N N N

role_name N N N N N N N

rowcnt N N N N N N N

show_role N N N N N N N

suser_id N Y Y N N N N

suser_name N Y Y N N N N

tsequal Y Y N Y N N N

used_pgs N N N N N N N

user Y Y Y N N N N

user_id Y Y Y Y N N N

user_name Y Y Y Y N N N

valid_name N N N N N N N

valid_user N N N N N N N

Function ASE ASA ASIQ sql_serv dir_con db2 generic

Function ASE ASA ASIQ sql_serv dir_con db2 generic

textptr() Y Y N Y C N N

Functions

146

textvalid) Y Y N Y C N N

Function ASE ASA ASIQ sql_serv dir_con db2 generic

CHAPTER 4 Server Classes

147

insert
Description Adds new rows to a table or view.

Syntax insert [into] [database.[owner.]]{table_name|view_name}
 [(column_list)]
 {values (expression [, expression]...)
 |select_statement }

Usage Usage

• Component Integration Services processes the insert command when the
table on which it operates has been created as a proxy table. Component
Integration Services forwards the entire request (or part of it) to the server
that owns the actual object.

• When Component Integration Services forwards the insert command to a
remote server, the table name used is the remote table name, and the
column names used are the remote column names. These names may not
be the same as the local proxy table names.

Server Class ASEnterprise •insert commands using the values keyword
are fully supported.

• insert commands using a select command are supported for all datatypes
except text and image. text and image columns are only supported when
they contain null values.

• If all insert and select tables reside on the same remote server, the entire
statement is forwarded to the remote server for execution. This is referred
to as quickpass mode. Quickpass mode is not used if the select statement
does not conform to all the quickpass rules for a select command (see
“select” on page 156).

• If the select tables reside on one remote server, and the insert table resides
on a different server, Component Integration Services selects each row
from the source tables, and inserts the row into the target table.

Server Class ASAnywhere •Handling of the insert statement is the same as
for ASEnterprise.

Server Class ASIQ •Handling of the insert statement is the same as for
ASEnterprise.

Server Class sql_server •Handling of the insert statement is the same as for
ASEnterprise.

Server Class direct_connect •insert commands using the values keyword
are fully supported.

insert

148

• insert commands using a select command are fully supported, but the
table must have a unique index if the table has text or image columns.
When using insert with a select command, the entire command is sent to
the remote server if:

• All tables referenced in the command reside on the remote server

• The capabilities response from the DirectConnect indicates that
insert-select commands are supported

If both conditions are not met, Component Integration Services selects
each row from the source tables, and inserts the row into the target table.

• Component Integration Services passes data values as parameters to either
a cursor or a dynamic SQL statement. Language statements can also be
used if the DirectConnect supports it. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

Server Class db2 •insert commands using the values keyword are fully
supported for all valid DB2 datatypes.

• insert commands using a select command are fully supported for all valid
DB2 datatypes.

• When using insert with a select command, the entire statement is sent to
the remote server if:

• All tables referenced in the statement reside on the remote server

• Trace flag 11215 is enabled

If both conditions are not met, Component Integration Services selects
each row from the source tables, and inserts the rows into the target table.

Server Class generic •insert commands using the values keyword are
supported for all valid datatypes in server class generic.

• insert commands using a select command are supported for all valid
datatypes in server class generic. When using insert with a select
command, Component Integration Services selects each row from the
source tables, and then inserts the row into the target table.

See also See Also

insert in the Adaptive Server Reference Manual.

CHAPTER 4 Server Classes

149

open
Description Opens a cursor for processing.

Syntax open cursor_name

Usage Usage

• open opens a cursor. Cursors allow you to modify or delete rows on an
individual basis. You must first open a cursor to use the fetch, update, and
delete statements. For more information about cursors, see the Transact-
SQL User’s Guide.

• Adaptive Server returns an error message if the cursor is already open or
if the cursor has not been created with the declare cursor statement.

• Opening the cursor causes Adaptive Server to evaluate the select
statement that defines the cursor (specified in the declare cursor
statement) and makes the cursor result set available for processing.

• When the cursor is first opened, it is positioned before the first row of the
cursor result set.

• When you set the chained transaction mode, Adaptive Server implicitly
begins a transaction with the open statement if no transaction is currently
active.

See also See Also

close, deallocate cursor, declare cursor, fetch in this chapter.

open in the Adaptive Server Reference Manual.

prepare transaction

150

prepare transaction
Description Used by two-phase commit applications to see if a server is prepared to commit

a transaction.

Syntax prepare tran[saction]

Usage Usage

• When the Distributed Transaction Manager (DTM) is enabled, DTM
handles all transaction processing for servers of server class ASEnterprise
with a version of 12.0 or later.

• prepare transaction is ignored for servers with a server class of db2 or
generic.

• For all other server classes, Adaptive Server notifies Component
Integration Services when it receives a prepare transaction command so
that remote servers involved in the current transaction can enter the
prepared state.

• For each server that is involved in the current transaction, a prepare
transaction command is sent to the server and the results are monitored.
If there are no errors reported, each remote server is assumed to be in a
prepared state and Component Integration Services returns control to the
Adaptive Server. Adaptive Server then enters a prepared state for local
work performed by the transaction.

Server Class ASEnterprise •Transaction process for servers in class
ASEnterprise with a version prior to 12.0 is identical to that of server class
sql_server (release 10.0 or later).

• When DTM is not enabled, transaction processing for all servers in class
ASEnterprise is identical to that of server class sql_server (release 10.0 or
later).

• When the Adaptive Server receives notification to prepare a transaction,
the Distributed Transaction Manager issues a PrepareXact RPC to all
remote participants having a server class of ASEnterprise. When all
remote participants have acknowledge the PrepareXact RPC, any local
data changes are written to the database.

Server Class ASAnywhere •Transaction processing for servers in class
ASAnywhere is identical to that of server class sql_server (release 10.0 or
later).

Server Class ASIQ •Transaction processing for servers in class ASAnywhere
is identical to that of server class sql_server (release 10.0 or later).

CHAPTER 4 Server Classes

151

Server Class sql_server •Component Integration Services sends a prepare
transaction command to each server in class sql_server that is version
10.0 or later.

• The prepare transaction command is not sent to the following types of
servers:

• Sybase IQ 11.x

• Microsoft SQL Server

• Pre-version 10.0 SQL Server

• OmniSQL Server 10.1.2

Server Class direct_connect •Handling of the prepare transaction
command for servers in class direct_connect is identical to that of server
class sql_server (version 10.0 or later).

Server Class db2 •Component Integration Services does not send the
prepare transaction command to servers in class db2.

Server Class generic •Component Integration Services does not send the
prepare transaction command to servers in class generic

See also See Also

prepare transaction in the Adaptive Server Reference Manual.

readtext

152

readtext
Description Reads text and image values, starting from a specified offset and reading a

specified number of bytes or characters.

Syntax readtext [[database.]owner.]table_name.column_name
text_pointer offset size
[holdlock | noholdlock] [readpast]
[using {bytes | chars | characters}]
[at isolation {

[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3] }]]

Usage Usage

• Component Integration Services processes the readtext command when
the table on which it operates has been created as a proxy table.
Component Integration Services forwards the entire request (or part of it)
to the server that owns the actual object.

• When Component Integration Services forwards the readtext command to
a remote server, the table name used is the remote table name, and the
column names used are the remote column names. These names may not
be the same as the local proxy table names.

• The using bytes and at isolation clauses are ignored.

• The holdlock, noholdlock and readpast options are ignored.

Server Class ASEnterprise •Component Integration Services forwards the
following syntax to the remote server when the underlying table is a proxy
table:

readtext [[database.]owner.]table_name.column_name
 text_pointer offset size
[using {chars | characters}]

Server Class ASAnywhere •Handling of the readtext statement is the same
as for ASEnterprise.

Server Class ASIQ •Handling of the readtext statement is the same as for
ASEnterprise.

Server Class sql_server •Handling of the readtext statement is the same as
for ASEnterprise.

Server Class direct_connect •If the DirectConnect does not support text
pointers, readtext cannot be sent and its use results in errors.

CHAPTER 4 Server Classes

153

• If the DirectConnect does support text pointers, Component Integration
Services forwards the following syntax to the remote server:

readtext
 [[database.]owner.]table_name.column_name
text_pointer offset size
 [using {chars | characters}]

• readtext is issued anytime text or image data must be read. readtext is
called when a select command refers to a text or image column in the
select list, or when a where clause refers to a text or image column.

For example, you have a proxy table books that is mapped to the books
table on the remote server foo. The columns are id, name, and the text
column blurb. When the following statement is issued:

select * from books

Component Integration Services sends the following syntax to the remote
server:

select id, name, textptr(blurb) from foo_books

readtext foo_books.blurb @p1 0 0 using chars

Server Class db2 •readtext is not supported since text and image datatypes
are not supported for servers in class db2.

Server Class generic •readtext is not supported since text and image
datatypes are not supported for servers in class generic.

See also See Also

readtext in the Adaptive Server Reference Manual.

rollback transaction

154

rollback transaction
Description Rolls a user-defined transaction back to the last savepoint inside the transaction

or to the beginning of the transaction.

Syntax rollback {transaction | tran | work}
 [transaction_name | savepoint_name]

Usage Usage

• When the Distributed Transaction Manager (DTM) is enabled, DTM
handles all transaction processing for servers of server class ASEnterprise
with a version of 12.0 or later.

• For all other server classes, Adaptive Server notifies Component
Integration Services when it receives a rollback transaction command
and Component Integration Services attempts to rollback work associated
with remote servers in the current transaction.

• Multiple remote servers can be involved in a single transaction, each with
their own unit of work which is associated with the Adaptive Server unit
of work.

• Remote work is rolled back before local work.

• Work performed by transactional RPC’s is included in the local transaction
and can be rolled back if the remote server supports RPC’s within
transactions.

• transaction_name and savepoint_name is not used by Component
Integration Services in this release.

Server Class ASEnterprise •Transaction process for servers in class
ASEnterprise with a version prior to 12.0 is identical to that of server class
sql_server (release 10.0 or later).

• When DTM is not enabled, transaction processing for all servers in class
ASEnterprise is identical to that of server class sql_server (release 10.0 or
later).

• When the Adaptive Server receives notification to rollback a transaction,
the Distributed Transaction Manager issues a RollbackXact RPC to all
remote participants having a server class of ASEnterprise.

Server Class ASAnywhere •Transaction processing for servers in class
ASAnywhere is identical to that of server class sql_server (version 10.0 or
later).

Server Class ASIQ •Transaction processing for servers in class ASIQ is
identical to that of server class sql_server (version 10.0 or later).

CHAPTER 4 Server Classes

155

Server Class sql_server •When Component Integration Services receives
notification that a transaction is to be rolled back, it checks the
TRANSACTION ACTIVE state of all remote connections associated with
the client application. For each connection with an active transaction,
Component Integration Services sends a rollback transaction. If all
remote servers respond with no error, Component Integration Services
notifies the Adaptive Server that it can begin to roll back local work.

This process applies to version 10.0 or later, but not to the following
servers represented by server class sql_server is:

• Pre-version 10.0 SQL Server

• Microsoft SQL Server (any version)

• Sybase IQ

• OmniConnect 10.1.2

For these types of servers, transaction handling is similar to server class
db2, described below.

Server Class direct_connect •Transaction processing for servers in class
direct_connect is identical to that of server class sql_server (version 10.0
or later).

Server Class db2 •Transactions are supported only at the statement level for
servers in class db2. When the internal state of a client connection
indicates that there is an active transaction, Component Integration
Services precedes each insert, update and delete command with a begin
transaction command. It then issues a commit or rollback transaction
(depending on the success or failure of the statement) immediately after
the statement is complete.

Server Class generic •Transactions are supported only at the statement
level for servers in class db2. When the internal state of a client connection
indicates that there is an active transaction, Component Integration
Services precedes each insert, update and delete command with a
gen_begin_xact RPC. It then issues a gen_commit_xact or
gen_rollback_xact RPC (depending on the success or failure of the
statement) immediately after the statement is complete.

See also See Also

rollback in the Adaptive Server Reference Manual.

select

156

select
Description Retrieves rows from database objects.

Syntax select [all | distinct] select_list
 [into [[database.]owner.]table_name]
 [from [[database.]owner.]{view_name|table_name
 [(index index_name [prefetch size][lru|mru])]}
 [holdlock | noholdlock] [shared]
 [,[[database.]owner.]{view_name|table_name
 [(index index_name [prefetch size][lru|mru])]}
 [holdlock | noholdlock] [shared]]...]

 [where search_conditions]

 [group by [all] aggregate_free_expression
 [, aggregate_free_expression]...]
 [having search_conditions]

 [order by
 {[[[database.]owner.]{table_name.|view_name.}]
 column_name | select_list_number | expression}
 [asc | desc]
 [,{[[[database.]owner.]{table_name|view_name.}]
 column_name | select_list_number | expression}
 [asc | desc]]...]

 [compute row_aggregate(column_name)
 [, row_aggregate(column_name)]...
 [by column_name [, column_name]...]]

 [for {read only | update [of column_name_list]}]

 [at isolation {read uncommitted | read committed |
 serializable}]

 [for browse]
[plan "abstract plan"]

Usage Usage

• Component Integration Services processes the select command when any
table on which it operates has been created as a proxy table. When
possible, Component Integration Services forwards the entire syntax of a
select command to a single remote server. This is referred to as quickpass
mode.

• When Component Integration Services forwards the select command to a
remote server, the table name used is the remote table name, and the
column names used are the remote column names.

CHAPTER 4 Server Classes

157

• The following keywords are ignored for all servers except Sybase System
10 and later versions of Adaptive Server Enterprise, but they do not
prevent Component Integration Services from using quickpass mode:

• lock

• index

• parallel

• prefetch size

• holdlock

• noholdlock

• readpast

• shared

• at isolation

• The following keywords are never forwarded to a remote server and they
do prevent Component Integration Services from using quickpass mode:

• compute by

• for browse

• into

• plan “abstract plan”

• Quickpass mode is not used if any of the following conditions exist:

• All tables referenced in the from clause do not reside on the same
remote server

• Any tables are local (including temporary tables)

• The query contains syntax that the remote server does not support

• select commands in a union operation can all be forwarded to a remote
server, including the union operator, if all tables in the select commands
reside on the same remote server.

select

158

• If the select command returns a sorted result set involving a character
column from a remote server (for example, in a union operation, a group
by clause, or an order by clause), the rows may be returned in an
unexpected sort order if the remote server is configured with a different
sort order than Adaptive Server. You can rerun the query with traceflag
11216 turned on to receive the expected sort order. This traceflag is global
and should be turned off as soon as the query is executed.

Server Class ASEnterprise •All syntax is supported. Since the remote
server is assumed to have all capabilities necessary to process Transact-
SQL syntax, all elements of a select command, except those mentioned
above, are forwarded to a remote server, using quickpass mode.

• A bulk copy transfer is used to copy data into the new table when a
select...into command is issued and the into table resides on a remote
Adaptive Server. Both the local and remote databases must be configured
with dboption set to select into / bulkcopy.

Server Class ASAnywhere •All syntax is supported. Since the remote
server is assumed to have all capabilities necessary to process Transact-
SQL syntax, all elements of a select command, except those mentioned
above, are forwarded to a remote server, using quickpass mode.

• If the select...into format is used and the into table is accessed through the
ASAnywhere interface, bulk inserts are not used. Instead, Component
Integration Services uses Client-Library to prepare a parameterized
dynamic insert command, and executes it for each row returned by the
select portion of the command.

Server Class ASIQ •All syntax is supported. Since the remote server is
assumed to have all capabilities necessary to process Transact-SQL
syntax, all elements of a select command, except those mentioned above,
are forwarded to a remote server, using quickpass mode.

• If the select...into format is used and the into table is accessed through the
db2 interface, bulk inserts are not used. Instead, a separate connection is
used to handle the text of a CIS-generated insert command.

Server Class sql_server •All syntax is supported. Since the remote server is
assumed to have all capabilities necessary to process Transact-SQL
syntax, all elements of a select command, except those mentioned above,
are forwarded to a remote server, using quickpass mode.

• A bulk copy transfer is used to copy data into the new table when a
select...into command is issued and the into table resides on a remote
Adaptive Server. Both the local and remote databases must be configured
with dboption set to select into / bulkcopy.

CHAPTER 4 Server Classes

159

Server Class direct_connect •The first time Component Integration
Services requires a connection to a server in class direct_connect, a
request for capabilities is made of the DirectConnect. Based on the
response, Component Integration Services determines the parts of a select
command to forward to the DirectConnect. In most cases, this is
determined by the capabilities of the DBMS with which the DirectConnect
is interfacing.

• If the entire statement cannot be forwarded to the DirectConnect using
quickpass mode, Component Integration Services compensates for the
functionality that cannot be forwarded. For example, if the remote server
cannot handle the order by clause, quickpass is not used and Component
Integration Services performs a sort on the result set.

• Component Integration Services passes data values as parameters to either
a cursor or a dynamic SQL statement. Language statements can also be
used if the DirectConnect supports it. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

• The select...into command is supported, but the table must have a unique
index if the table has text or image columns.

• If the select...into format is used and the into table is accessed through a
DirectConnect, bulk inserts are not used. Instead, Component Integration
Services uses Client-Library to prepare a parameterized dynamic insert
command, and executes it for each row returned by the select portion of
the command.

Server Class db2 •By default, Component Integration Services does not
forward syntax involving order by, group by, union, distinct, all, and
expressions that involve more than column names.

• When you turn traceflag 11215 on, the full capabilities of a DB2 database
are assumed, and Component Integration Services forwards as much
syntax to the remote server (gateway) as DB2 can process, including order
by, group by, union, and so forth.

Server Class generic •Component Integration Services only forwards the
syntax to servers in class generic as is documented in the Generic Access
Module Reference Manual. Quickpass mode is not used when servers in
class generic are involved in a query.

• If the select...into format is used and the into table is accessed through the
generic interface, bulk inserts are not used. Instead, a separate connection
is used to handle the text of a CIS-generated insert command.

select

160

See also See Also

select in the Adaptive Server Reference Manual.

CHAPTER 4 Server Classes

161

set
Description Sets Adaptive Server query processing options for the duration of the user’s

work session. The subset of options listed below affects behavior unique to
Component Integration Services. For a complete list of options, see the
Adaptive Server Reference Manual.

Syntax set cis_rpc_handling {on | off}

set strict_dtm_enforcement {on | off}

set transaction_isolation_level {on | off}

set transactional_rpc {on | off}

set textptr_parameters {on | off}

set textsize value

Usage Usage

• Normally, all outbound RPCs are routed through Adaptive Server’s site
handler. These RPCs cannot participate in any transactions, and the
performance characteristics of routing many RPCs through the site
handler may necessitate the use of an alternate method for RPC handling.

• Component Integration Services provides an alternate means of handling
outbound RPCs. If cis_rpc_handling is on, outbound RPCs are routed
through a Client-Library connection that is persistent through the life of
the client’s connection to the Adaptive Server. This means that any
number of RPCs can be routed through the same connection, without a
connect and disconnect between each RPC. This connection is the same
connection used by Component Integration Services to handle all
interaction with the remote server, including processing of select, insert,
delete and update commands.

• The client application issues set cis_rpc_handling on or off to control
whether an outbound RPC is to be routed through the Adaptive Server’s
site handler or through a Component Integration Services connection. If
cis_rpc_handling is on, Component Integration Services processes the
RPC request; if cis_rpc_handling is off, the site handler processes the
RPC.

• When a client application makes a new connection to Adaptive Server, the
connection inherits the setting for the configuration parameter cis rpc
handling (default is off). This determines the default handling for
outbound RPCs.

set

162

strict_dtm_enforcement •If this property is ON, then transactions that
involve participants that are not DTM-enabled servers (i.e. non-ASE 12.0
servers) are aborted.

• The default is OFF, in which case the behavior of transaction management
for remote servers is “best-effort”, which is compatible with prior release
behavior.

transaction_isolation_level •The isolation level state between the local
thread and the thread created by the connection to the remote server is
maintained. If the isolation level changes, then the state is synchronized
between the local and remote servers by sending the appropriate set
transaction_isolation_level command.

• This state synchronization is only performed for connections to servers in
class ASEnterprise.

transactional_rpc •Setting transactional_rpc on results in the same
behavior as setting cis_rpc_handling on, except that RPCs that are issued
outside of a transaction will continue to be routed through the site handler
if cis_rpc_handling is off.

textptr_parameters •This command will affect the behavior of parameters to
RPCs that are managed by CIS.

• Any RPC parameter that is of type binary(16) or varbinary(16) is assumed
to be a textptr if the setting for textptr_parametrs is on - only if the binary
parameter is preceded by a char or varchar parameter that contains a string
reference to a table that was the source of the textptr (Please refer to the
discussion of textptr_parameter handling in Chapter 3 of this book).

• The textptr is expanded into as many 32k chunks of text as are needed to
contain the full text value, and sent to the remote server as
CS_LONGCHAR parameters if the remote server supports the TDS
LONGCHAR data type. If this type is not supported, then the expansion is
disabled, and the setting of textptr_parameters is assumed to be off.

See also See Also

set in the Adaptive Server Reference Manual.

CHAPTER 4 Server Classes

163

setuser
Description Allows a Database Owner to impersonate another user.

Syntax setuser ["user_name"]

Usage Usage

• The Database Owner uses the setuser command to adopt the identity of
another user in order to use another user’s database objects. When using
Component Integration Services, these objects can be either local or
remote.

• Component Integration Services processes the setuser command—it does
not forward the command to the remote server. Component Integration
Services drops all current connections that have been made on behalf of
the current user.

• The setuser command cannot be executed when a transaction is current.

• Permissions that are set on a remote server override permissions set by
Component Integration Services. Component Integration Services cannot
change permissions of a user on a remote server.

• Prior to using the setuser command, the user to be impersonated must
have an external login mapped to the remote server. This is set by the
sp_addexternlogin system procedure (for more information on
sp_addexternlogin, see the Adaptive Server Reference Manual).

See also See Also

setuser in the Adaptive Server Reference Manual.

truncate table

164

truncate table
Description Removes all rows from a table.

Syntax truncate table [[database.]owner.]table_name

Usage Comments

• Component Integration Services processes the truncate table command
when the table on which it operates has been created as a proxy table.

• When Component Integration Services forwards the truncate table
command to a remote server, the table name used is the remote table name.
This name may not be the same as the local proxy table name.

Server Class ASEnterprise •Component Integration Services forwards the
truncate table command to servers of class ASEnterprise.

Server Class ASAnywhere •Component Integration Services forwards the
truncate table command to servers of class ASAnywhere.

Server Class ASIQ •Component Integration Services forwards the truncate
table command to servers of class ASIQ.

Server Class sql_server •Component Integration Services forwards the
truncate table command to servers of class sql_server.

Server Class direct_connect and sds •If the remote server has requested
DB2 syntax, the following statement is forwarded:

delete from [owner.]table_name

Otherwise, Transact-SQL syntax is sent:

truncate table [[database.]owner.]table_name

Server Class db2 •The following syntax is forwarded to the remote server:

delete from [owner.]table_name

Server Class generic •Component Integration Services processes the
truncate table command using an RPC call to the procedure
gen_truncate_table.

See also truncate table in the Adaptive Server Reference Manual.

CHAPTER 4 Server Classes

165

update
Description Changes data in existing rows, either by adding data or by modifying existing

data.

Syntax update [[database.]owner.]{table_name | view_name}
 set [[[database.]owner.]{table_name.|view_name.}]
 column_name1 =
 {expression1|NULL|(select_statement)}
 [, column_name2 =
 {expression2|NULL|(select_statement)}]...
 [from [[database.]owner.]{view_name|table_name
[(index index_name [prefetch size][lru|mru])]}

 [,[[database.]owner.]{view_name|table_name
[(index index_name [prefetch size][lru|mru])]}]
 ...]
 [where search_conditions]

update [[database.]owner.]{table_name | view_name}
 set [[[database.]owner.]{table_name.|view_name.}]
 column_name1 =
 {expression1|NULL|(select_statement)}
 [, column_name2 =
 {expression2|NULL|(select_statement)}]...
 where current of cursor_name

Usage • Component Integration Services processes the update command when the
table on which it operates has been created as a proxy table. Component
Integration Services forwards the entire request (or part of it) to the server
that owns the actual object.

• The update command specifies the row or rows you want to change, and
the new data. The new data can be a constant, an expression, or data pulled
from other tables.

• Component Integration Services executes the update command using one
of two methods:

a The entire command is forwarded to the remote server as a single
statement in close to its original syntax. If the syntax and remote
capabilities match, the entire statement is forwarded and processed
remotely. This is referred to as quickpass mode.

b If the entire command cannot be forwarded to a remote server,
Component Integration Services declares and opens one or more
cursors in update mode, and begins a scan on the remote table. Each
cursor forwards as much of the original statement’s predicates to the
remote server as possible. For each row fetched that meets the search
criteria, a positioned update is executed.

update

166

• When Component Integration Services forwards the update command to
a remote server, the table name used is the remote table name, and the
column names used are the remote column names. These names may not
be the same as the local proxy table names.

• Component Integration Services generally passes the original update
syntax to remote servers as a single statement, but the following conditions
will likely cause the statement to be executed using method 2, above:

• The statement contains multiple tables that are not located in the same
remote server

• The statement contains local tables (including temporary tables)

• The statement contains certain referential integrity checks

• The statement contains system functions in the predicate list

• The statement contains syntax that the remote server does not support

• The following keywords are ignored and do not prevent Component
Integration Services from using quickpass mode:

• prefetch

• index

• lru | mru

• The format involving where current of is never forwarded to a remote
server and causes the statement to be executed using method 2 above.

Server Class ASEnterpriser •If Component Integration Services cannot
pass the entire statement to a remote server, a unique index must exist on
the table.

• The update command is fully supported for all datatypes except text and
image. text and image data cannot be changed with the update command,
except when setting the text or image value to null. Use the writetext
command instead.

• If quickpass mode is not used, data is retrieved from the source tables, and
the values in the target table are updated using a separate cursor designed
for handling a positioned update.

Server Class ASAnywhere •Handling of the update statement is the same
as for ASEnterprise.

Server Class ASIQ •Handling of the update statement is the same as for
ASEnterprise.

CHAPTER 4 Server Classes

167

Server Class sql_server •Handling of the update statement is the same as
for ASEnterprise.

Server Class direct_connect •The following syntax is supported by servers
of class direct_connect:

update [[database.]owner.]{table_name | view_name}
 set [[[database.]owner.]{table_name.|view_name.}]
 column_name1 =
 {expression1|NULL|(select_statement)}
 [, column_name2 =
 {expression2|NULL|(select_statement)}]...

[where search_conditions]

update commands that conform to this syntax use quickpass mode, if the
capabilities response from the remote server indicates that all elements of
the command are supported. Examples of negotiable capabilities include:
subquery support, group by support, and built-in support.

• If the remote server does not support all elements of the command, or the
command contains a from clause, Component Integration Services issues
a query to obtain the values for the set clause, and then issues an update
command to the remote server.

• Component Integration Services passes data values as parameters to either
a cursor or a dynamic SQL statement. Language statements can also be
used if the DirectConnect supports it. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

Server Class db2 •The following syntax is supported by servers of class
db2:

update [[database.]owner.]{table_name | view_name}
 set [[[database.]owner.]{table_name.|view_name.}]
 column_name1 =
 {expression1|NULL|(select_statement)}
 [, column_name2 =
 {expression2|NULL|(select_statement)}]...

[where search_conditions]

• Server’s of class db2 do not contain the capabilities negotiation features of
server class direct_connect, so the syntax passed to the remote server is
simpler than that allowed by Transact-SQL. The syntax does not contain
the following:

• Search conditions containing subqueries, group by, or order by
clauses

update

168

• Transact-SQL built-in functions

• Transact-SQL operators (such as bitwise operators)

• Syntax not allowed by DB2

Component Integration Services processes the update command using
method 2, described above, when the statement is complex.

• If the server is a DB2 system, use traceflag 11215 to instruct Component
Integration Services that the remote server is capable of handling all DB2
syntax. This assumption is not made automatically because not all
gateways using the db2 server class are actually connected to DB2
systems. When trace flag 11215 is turned on, quickpass mode is used
unless the following conditions exist:

• The statement cannot be expressed in DB2 syntax

• The statement contains outer joins

• The statement contains like clauses with Sybase extensions

• The statement contains built-in functions that are not supported by
DB2

• When an update statement contains a select statement, Component
Integration Services issues a query to obtain the values for the set clause,
and then issues an update command to the remote server, unless trace flag
11215 is enabled.

• When an update statement contains a from clause, Component Integration
Services issues a query to obtain the values for the set clause, and then
issues an update command to the remote server.

Server Class generic The following syntax is supported by servers of class
generic:

update [[database.]owner.]{table_name | view_name}
 set [[[database.]owner.]{table_name.|view_name.}]
 column_name1 =
 {expression1|NULL}
 [, column_name2 =
 {expression2|NULL}]...

[where search_conditions]

• Server’s of class generic do not contain the capabilities negotiation
features of server class direct_connect, so the syntax passed to the remote
server is simpler than that allowed by Transact-SQL. The syntax does not
contain the following:

CHAPTER 4 Server Classes

169

• Search conditions containing subqueries, group by, or order by
clauses

• Transact-SQL built-in functions

• Transact-SQL operators (such as bitwise operators)

• Syntax not allowed by the generic server class

Component Integration Services processes the update command using
method 2, described above, when the statement is complex.

• When an update statement contains a complex search condition, a select
statement, or a from clause, Component Integration Services issues a
query to obtain the values for the set clause, and then issues an update
command to the remote server.

See also update in the Adaptive Server Reference Manual.

update statistics

170

update statistics
Description Updates information about the distribution of key values in specified indexes.

Also updates row count information.

Syntax update statistics table_name [index_name]

Usage • When the update statistics command is issued against a proxy table,
Component Integration Services provides meaningful statistics on the
remote table and the given index or on all indexes if no index is specified.
The results are used to construct a distribution page for each index. This
distribution page is stored in the database. When a new distribution page
is created for an index, any previous distribution page for that index is
freed.

• Using update statistics, Component Integration Services creates
extremely accurate distribution statistics for remote tables. This
information is used to determine the optimal join order, giving Component
Integration Services the ability to generate optimal queries against remote
databases which may not support cost-based query optimization.

• When Component Integration Services forwards the command to a remote
server, the table name used is the remote table name, and the column
names used are the remote column names. These names may not be the
same as the local proxy table names.

• Obtaining information on an index, and especially on a number of indexes,
can be time consuming on large tables. Trace flag 11209 can be used to
indicate that update statistics is to obtain row count only. When this flag
is on, previous distribution pages for indexes are not replaced.

• Component Integration Services retrieves row count information even if
no indexes exist.

Server Class ASEnterprise •If the table on which the statistics are requested
has no indexes, Component Integration Services issues the following
command:

select count(*) from table_name

It is also the only command issued when trace flag 11209 is on.

• If the table has an index and the index is specified in the command,
Component Integration Services issues the following commands:

select count(*) from table_name

select count(*) column_name [,column_name, ...]
 from table_name
 group by column_name [,column_name, ..]

CHAPTER 4 Server Classes

171

The column name(s) represent the column or columns that make up the
index.

For example, when the following command is issued:

update statistics customers ind_name

Component Integration Services issues:

select count(*) from customers

select count(*) last_name, first_name
 from customers
 group by last_name, first_name

• If the table has one or more indexes but no index is specified in the
statement, Component Integration Services issues the select count (*)
once, and the select/order by commands for each index.

Server Class ASAnywhere •The processing of update statistics in this
server class is identical to that of server class ASEnterprise described
above.

Server Class ASIQ •The processing of update statistics in this server class
is identical to that of server class ASEnterprise described above.

Server Class sql_server •The processing of update statistics in this server
class is identical to that of server class ASEnterprise described above.

Server Class direct_connect •The processing of update statistics in this
server class is identical to that of server class ASEnterprise described
above.

• If the direct_connect indicates that is cannot handle the group by or the
count(*) syntax, statistics are not collected for the direct_connect.

Server Class db2 •The processing of update statistics in server class db2 is
identical to that of server class ASEnterprise described above.

Server Class generic •When an update statistics command is issued,
Component Integration Services issues the following command:

select count(*) from table_name

• No distribution statistics are calculated for tables owned by servers of this
class.

See also update statistics in the Adaptive Server Reference Manual.

writetext

172

writetext
Description Permits non-logged, interactive updating of an existing text or image column.

Syntax writetext [[database.]owner.]table_name.column_name
 text_pointer [with log] data

Usage • Component Integration Services processes the writetext command when
the table on which it operates has been created as a proxy table.

• If the remote server referenced by the proxy table does not support text
pointers, writetext is not supported.

• To process the writetext command, Component Integration Services
issues the following Client Library commands using the connection
established to the remote server:

ct_command(command, CS_SEND_DATA_CMD, NULL,
 CS_UNUSED, CS_COLUMN_DATA);

ct_data_info(command, CS_SET, CS_UNUSED, iodesc)

ct_send_data(command, (CS_VOID *) start, length)

Server Class ASEnterprise •The writetext command is processed using a
separate connection to the remote server.

Server Class ASAnywhere •The writetext command is processed using a
separate connection to the remote server.

Server Class ASIQ •The writetext command is processed using a separate
connection to the remote server.

Server Class sql_server •The writetext command is processed using a
separate connection to the remote server.

Server Class direct_connect •If the DirectConnect supports text pointers,
Component Integration Services treats the DirectConnect as if it were a
server in class sql_server.

Server Class db2 •writetext is not supported for tables owned by servers in
this class.

Server Class generic •writetext is not supported for tables owned by
servers in this class.

See also writetext in the Adaptive Server Reference Manual.

173

A P P E N D I X A Troubleshooting

This appendix provides troubleshooting tips for problems that you may
encounter when using Component Integration Services. The purpose of
this chapter is:

• To provide enough information about certain error conditions so that
you can resolve problems without help from Technical Support

• To provide lists of information that you can gather before calling
Technical Support, which will help resolve your problem quickly

• To provide you with a greater understanding of Component
Integration Services

Error Messages and the Troubleshooting Guide should also be used for
troubleshooting. While this appendix provides troubleshooting tips for
most frequently asked Component Integration Services questions, Error
Messages lists all error messages with a one-line recovery procedure; the
Troubleshooting Guide provides tips on SQL Server problems that are not
specific to Component Integration Services.

For the most up-to-date information on troubleshooting and technical tips,
refer to Sybase’s electronic services. See “Other Sources of Information”
on page ix.

Problems Accessing Component Integration Services

174

Problems Accessing Component Integration Services
If you issue a command that accesses a remote object and Component
Integration Services is not found, the following error message appears:

4050 cis extension not enabled or installed

Do the following:

• Verify that the enable cis configuration parameter is set to 1 by running:

sp_configure "enable cis"

sp_configure returns the following row for the enable cis parameter:

name min max config value run value
 enable cis 0 1 1 1

Both “config value” and “run value” should be 1. If both values are 0, set
the enable cis configuration parameter to 1, and restart the server. Use the
syntax:

sp_configure "enable cis" 1

If “config value” is 1 and “run value” is 0, the enable cis configuration
parameter is set, but will not take effect until the server is restarted.

• Check the error log. If Component Integration Services loaded correctly,
you will see the following line at the start of the error log:

Distributed services option loaded.

If there was a problem loading Component Integration Services, the
message stating the problem is displayed instead. Contact Sybase
Technical Support to correct the problem. (See “If You Need Help” on
page 182.)

APPENDIX A Troubleshooting

175

Problems Using Component Integration Services
This section provides tips on how to correct problems you may encounter when
using Component Integration Services.

Unable to Access Remote Server
When you cannot access a remote server, the following error message is
returned:

11206 Unable to connect to server server_name.

The message will be preceded by one of the following Client-Library
messages:

Requested server name not found
Driver call to connect two endpoints failed
Login failed

The Client-Library message indicates why you cannot access the remote server
as described in the following sections.

Requested Server Name Not Found

The server is not defined in the interfaces file when the following messages
display:

Requested server name not found
11206 Unable to connect to server server_name.

When a remote server is added using the sp_addserver stored procedure, the
interfaces file is not checked. It is checked the first time you try to make a
connection to the remote server. To correct this problem, add the remote server
to the interfaces file that is being used by Component Integration Services.

Driver Call to Connect Two Endpoints Failed

If the remote server is defined in the interfaces file, but no response was
received from the connect request, the following messages are displayed:

Driver call to connect two endpoints failed
11206 Unable to connect to server server_name.

Check the following:

• Is your environment set up correctly?

Problems Using Component Integration Services

176

To test this, try to connect directly to the remote server using isql or a
similar tool. Do this by following these steps:

• Log into the machine where Component Integration Services is
running.

• Set the SYBASE environment variable to the same location that was
used when Component Integration Services was started. Component
Integration Services uses the interfaces file in the directory specified
by the SYBASE environment variable, unless it is overridden in the
runserver file by the -i argument.

Note These first two steps are important to ensure that the test
environment is the same environment that Component Integration
Services was using when you could not connect to the remote server.

• Use isql or a similar tool to connect directly to the remote server.

If the environment is set up correctly and the connection fails, continue
through this list. If the connection is made, there is a problem with the
environment being used by Component Integration Services.

• Is the remote server up and running?

Log into the machine where the remote server is located to verify the
server is running. If the server is running, continue through this list. If the
server is hung, restart the server and try your query again.

• Is the entry for the remote server in the interfaces file correct:

• Is the machine name the correct name for the machine the software is
loaded on?

• If the interfaces file is a text file, do the query and master lines start
with a tab and not spaces?

• Is the port number available? Check the services file in the /etc
directory to ensure that the port number is not reserved for another
process.

If the port is available, is it already in use? To determine this on
UNIX, run the command:

netstat -a

APPENDIX A Troubleshooting

177

Login Failed

If the remote server is accessed, but the login name and password are not
correct, the following messages display:

Login failed
11206 Unable to connect to server server_name.

Check to see if there is an external login established for the remote server by
executing:

exec sp_helpexternlogin server_name

If no external login is defined, Component Integration Services uses the user
login name and password that was used to connect to Adaptive Server. For
example, if the user connected to Adaptive Server using the “sa” account,
Component Integration Services uses the login name “sa” when making a
remote connection. Unless the remote server is another Adaptive Server, the
"sa" account probably does not exist, and an external login must be added using
sp_addexternlogin.

If an external login is defined, verify that the user’s login name is correct.
Remote server logins are case sensitive; for example, DB2 logins are all
uppercase. Is the case correct for the user login name you are using and the
entry in externlogins?

If the login name is correct, the password might be incorrect. It is not possible
to display the password. If the user login name is incorrect or if the password
might be incorrect, drop the existing external login and redefine it by executing
the commands:

exec sp_dropexternlogin server_name, login_name
go
 exec sp_addexternlogin server_name, login_name,
remote_login, remote_password
go

Unable to Access Remote Object
When you are unable to access a remote object, the following error message
appears:

Error 11214 Remote object object does not exist.

The problem may be in the local proxy table definition or in the table itself on
the remote server.

Problems Using Component Integration Services

178

Verify the following:

• Has the object been defined in Component Integration Services?

To confirm, run:

sp_help object_name

If the object does not exist, create the object in Component Integration
Services (see “Mapping Remote Objects to Local Proxy Tables” on page
3-4).

• If the object has been defined in Component Integration Services, is the
definition correct?

Table names can have four parts with the format
server.dbname.owner.tablename. The dbname part is not valid for DB2,
Oracle or InfoHUB servers.

If the object definition is incorrect, delete it using sp_dropobjectdef, and
define correctly using sp_addobjectdef.

• If the local object definition is correct, check the table on the remote
server:

• Are permissions set to allow access to both the database and table?

• Has the database been marked suspect?

• Is the database available?

• Can you access the remote table using a native tool (for example, SQL
on Rdb or SQL*Plus on Oracle)?

Problem Retrieving Data From Remote Objects
When you receive error messages pertaining to mismatches in remote objects,
the Component Integration Services object definition does not match the
remote object definition. This happens if:

• The object definition was altered outside of Component Integration
Services

• An index was added or dropped outside of Component Integration
Services

APPENDIX A Troubleshooting

179

Object Is Altered Outside Component Integration Services

Once an object is defined in Component Integration Services, alterations made
to an object at the remote server are not made to the local proxy object
definition. If an object is altered outside of Component Integration Services,
the steps to correct the problem differ, depending on whether create existing
table or create table was used to define the object.

To determine which method was used to define the object, run the statement:

sp_help object_name

If the object was defined via the create existing table command, the following
message is returned in the result set:

Object existed prior to CIS.

If this message is not displayed, the object was defined via the create table
command.

If create existing table was used to create the table in Component Integration
Services:

1 Use the drop table command in Component Integration Services.

2 Create the table again in Component Integration Services using create
existing table. This creates the table using the new version of the table on
the remote server.

If the table was created in Component Integration Services using create table,
you will drop the remote object when you use drop table. To prevent this,
follow these steps:

1 Rename the table on the remote server so the table is not deleted when you
use drop table.

2 Create a table on the remote server using the original name.

3 Use drop table in Component Integration Services to drop the table in
Component Integration Services and on the remote server.

4 Rename the saved table in step 1 with its original name on the remote
server.

Problems Using Component Integration Services

180

5 Create the table again in Component Integration Services using create
existing table.

 Warning! Do not use drop table in Component Integration Services prior to
renaming the table on the remote server, or you will delete the table on the
remote server.

A good rule to follow is to create the object on the remote server, and then do
a create existing table to create the object in Component Integration Services.
This enables you to correct mismatch problems with fewer steps and with no
chance of deleting objects on the remote server.

Index Is Added or Dropped Outside CIS

Component Integration Services is unaware of indexes that are added or
dropped outside Component Integration Services. Verify that the indexes used
by Component Integration Services are the same as the indexes used on the
remote server. Use sp_help to see the indexes used by Component Integration
Services. Use the appropriate command on your remote server to verify the
indexes used by the remote server. For example, you can use the describe
command with an Oracle server or select * from syscolumns, sysindexes for
a DB2 server.

If the indexes are not the same, the steps to correct the problem differ,
depending on whether create existing table or create table was used to define
the object.

To determine which method was used to define the object, run the statement:

sp_help object_name

If the object was defined via the create existing table command, the following
message is returned in the result set:

Object existed prior to CIS.

If this message is not displayed, the object was defined via the create table
command.

If create existing table was used to create the object:

1 Use drop table in Component Integration Services.

2 Re-create the table in Component Integration Services using create
existing table. This will update the indexes to match the indexes on the
remote table.

APPENDIX A Troubleshooting

181

If create table was used to create the object:

1 Use drop table to drop the index from the remote table.

2 Re-create the index in Component Integration Services using create
index. This creates the index in Component Integration Services and the
remote server.

An alternative method if create table was used to define the object is to turn
on trace flag 11208. This trace flag prevents the create index statement from
transmitting to the remote server. To use trace flag 11208, follow these steps:

1 Turn on trace flag 11208:

dbcc traceon(11208)

2 Create the index using create index.

3 Turn off trace flag 11208:

dbcc traceoff(11208)

If You Need Help

182

If You Need Help
If you encounter a problem that you cannot resolve using the manuals, ask the
designated person at your site to contact Sybase Technical Support. Gather the
following information prior to calling Technical Support to help resolve your
problem more quickly.

• If a problem occurs while you are trying to access remote data, execute the
same script against a local table. If the problem does not exist on the local
table, it is specific to Component Integration Services and you should
continue through this list.

• Find out what version of Component Integration Services you are using:

select @@cis_version

• Note the SQL script that reproduces the problem. Include the script that
was used to create the tables.

• Find the processing plan for your query. This is generated using set
showplan. An example of this is:

set showplan, noexec on
 go
 select au_lname, au_fname from authors
 where au_id = ‘A1374065371’
 go

The output for this query will look like this:

STEP1
 The type of query is SELECT.
 FROM TABLE
 authors
 Nested iteration
 Using Clustered Index

The noexec option compiles the query, but does not execute it. No
subsequent commands are executed until noexec is turned off.

• Obtain the event logging when executing the query by turning on trace
flags 11201 – 11205. These trace flags log the following:

• 11201 – Client connect, disconnect, and attention events

• 11202 – Client language, cursor declare, dynamic prepare, and
dynamic execute-immediate text

• 11203 – Client rpc events

• 11204 – Messages routed to client

APPENDIX A Troubleshooting

183

• 11205 – Interaction with remote servers

After executing the script with the trace flags turned on, the logging is
found in the error log in the $SYBASE/install directory. For example:

dbcc traceon (11201,11202,11203,11204,11205)
 go
 select au_lname, au_fname from authors
 where au_id = ’A1374065371’
 go
 dbcc traceoff (11201,11202,11203,11204,11205)
 go

The error log output is as follows (the timestamps printed at the beginning
of each entry have been removed to improve legibility):

server LANGUAGE, spid 1: command text:
 select au_lname, au_fname from authors where au_id
= ’A1374065371’
 server SIGDISABLE, spid 1: signals disabled on
endpoint 10
 server RMT_CONNECT, spid 1: connected to server
’SYBASE’, using language/charset
’us_english.iso_1’, packet size 512
 server SYB_TSCN, spid 1, server SYBASE:
 SELECT au_id, au_lname, au_fname FROM
pubs2.dbo.authors WHERE au_id = "A1374065371"
 server OMNIENDS, spid 1: closing cursor ’O1_16’
 server OMNICLOS, spid 1: deallocating cursor
’O1_16’, type CONNECTION.

This tracing is global, so once the trace flags are turned on, any query that
is executed will be logged; therefore, turn tracing off once you have your
log. Also, clean out the error log periodically by bringing the server down,
renaming the error log, and restarting the server. This creates a new error
log.

If You Need Help

184

Index

185

A
Access methods 8
access_server server class 83

connection management 35
datatype conversions 115
with text and image datatypes 33

Adding
columns to a table 90, 92
rows to a table or view 147
space to a database 90

Aliases, user
remote logins 53

Allocating resources with sp_configure 60
alter database command 90
alter table command 90, 92
@@textsize global variable 31
auto identity database option 17
Automatic connections 20

B
Backups 79
bcp (bulk copy utility)

for text and image datatypes 32
begin transaction command 25

proxy tables and 97

C
Changes, canceling. See rollback command 154
Changing

database size 90
remote tables 90, 92

Checkpoint process
See also Recovery\ 154

Savepoints 154
cis bulk insert batch size configuration parameter 62

cis connect timeout configuration parameter 63
cis cursor rows configuration parameter 63
cis packet size configuration parameter 63
cis rpc handling configuration parameter 63
Client-Library functions 10

connection management 35
ct_send_data 32

close command 99
Clustered indexes

See also Indexes 119
Columns

adding to table 90, 92
creating indexes on proxy table 118

commit command 102
remote servers and 25

commit work command. See commit command 103
Component Integration Services

configuring and tuning 59
enabling 5
running 5
setting up 5, 52
users 4

Configuration (Server)
Component Integration Services 4, 52, 59

Configuration parameters
Component Integration Services 61, 63

connect to command 18, 54
connect to option, grant 19
Connections

listing of remote 74
management of 35
maximum of CIS 62
permission 19
physical and logical 67
timeouts 63
verification 25, 54

Constraints
preventing 76

Conventions
used in manuals ix

Index

186

Converting remote server datatypes 16
server class db2 117

Copying
text and image datatypes 32

create existing table command 11, 15
datatype conversions and 16
example 16
proxy tables 105, 107

create index command 118
query plan for remote tables 44

create proxy_table command
mapping proxy tables to remote tables 121

create table command
proxy tables 120
query plan 43
remote tables 11, 15

Creating
indexes on proxy tables 118
proxy tables 105, 107, 120

ct_send_data Client-Library function 32
Cursor result set

returning rows 140
Cursors

deallocating 128
fetching remotely 140
opening 149
row count, setting 63

D
Data modification

text and image with writetext 172
update 165

Database syntax, using native. See Passthrough mode 17
Databases

increasing size of 90
Datatype conversions 86

remote servers 16
server class db2 117
server class direct_connect or access_server 115

db2 server class
connection management 35
datatype conversions 117
with text and image datatypes 34

db2 syntax mode, Open Server applications that support
124

dbcc (Database Consistency Checker) 69, 76
DB-Library programs

prepare transaction 150
dbmoretext DB-Library function 32
dbwritetext DB-Library function 32
deallocate cursor command

remote servers and 125
Deallocating cursors 128
declare cursor command 128
Defining

default storage locations 11
indexes 15
remote objects 10, 11, 54, 56
remote servers 10, 52, 54
storage locations of remote objects 11, 54
tables 11, 15, 17

delete command
remote tables 129

Deleting
See also Dropping 130

direct_connect server class 83
connection management 35
with text and image datatypes 33

DirectCONNECT servers 5
disconnect command 19
drop database command

remote servers 133
drop index command

proxy tables 134
query plan for remote tables 45

drop table command
proxy tables 136
query plan for remote tables 44

Dropping
databases from remote servers 134
indexes on proxy tables 135
proxy tables 137
rows from a table 130

E
enable cis configuration parameter 62
Enabling Component Integration Services 5

Index

187

Error logging of text and image datatypes 32
Event logging 75
execute command

RPCs 139
Extending database storage 90
External logins 53

F
fetch command

proxy tables 139
Fetching cursors

proxy tables 139
Files

interfaces 52
sql.ini file 52

G
generic server class 85

connection management 35
grant command

passthrough connections 19
grant connect to command 19

I
IDENTITY columns 17
image datatype 30

bulk copy to remote servers 32
converting 31
entering values 32
error logging 32
padding 31
pattern matching 31
pointer values in readtext 152
restrictions 30
with server class sql_server 32
with server class db2 34
with server class direct_connect or access_server

33
with server class sql_server 32
writetext to 172

Impersonating a user. See setuser command 163
Indexes

defining 15
dropping from proxy tables 134
update statistics on 170
updating 75

insert command
proxy tables 141

Integrity of data
remote tables and 45

Interface to remote servers 9
Interfaces file

adding remote servers 52

J
Joins

between remote tables 56, 58

L
like keyword 31
Local tables. See Proxy tables 45
Location for remote tables 11
lock timeout interval configuration parameter 69
Logging

events 75
text or image data 172

Logging in
to remote servers 10

Logical connections 67
Logins

external 53
See also Remote logins\ 163

Users 163

M
Mapping

remote objects 54, 56
Markers, user-defined. See Placeholders\ 154
max cis remote connections configuration parameter

62

Index

188

max cis remote servers configuration parameter 62
Memory

releasing with deallocate cursor 128
Memory usage report 74
Modes, trusted/untrusted 46
Modifying

databases 90

N
Names

local 11
setuser 163

Native database syntax, using. See Passthrough mode 17
Nested select statements. See select command\ 156
Non-logged operations 172

O
Object types 9

rpc as read only tables 28
open command 148
Opening cursors 149
Optimization

defining existing tables and 16
quickpass mode 37, 130, 147, 156, 165
remote tables 39, 76
update statistics 39

Original identity, resuming an. See setuser command 163
Outbound remote procedure calls 63

P
Packets, network

size for remote servers 63
Pages, data

See also Index pages\ 119
Table pages 119
Passthrough connection permission 19
Passthrough mode 17

connect to command 18, 54
connect to command 106
sp_autoconnect system procedure 19

sp_passthru system procedure 20
sp_remotesql system procedure 21

patindex string function 31
Pattern matching

remote tables 31
with text datatype 31

Performance
configuration parameters 60
query optimization 35
remote tables 39, 76

Permissions
passthrough connections 19

Physical connections 67
prepare transaction command 25

proxy tables and 150
Processing remote procedure calls 67
Proxy tables

mapping 54, 56
mapping to remote tables with create proxy_table

121
triggers 45

Q
Queries

execution settings 161
Query optimization 35, 42

disabling 76
Query plans 42

create table 43
remote tables and 42

Quickpass mode 37, 130, 147, 156, 165

R
readtext command

errors from 32
remote tables and 151

Recovery 79
disabling CIS at start-up 76

Reference information
Transact-SQL commands for CIS 88

Referential integrity 45
remcon option, dbcc 74

Index

189

Remote connection listing 74
Remote logins. See External logins 53
Remote objects

default storage location 11
defining 10, 11
individual storage location 54
mapping 54, 56

Remote procedure calls 27
handling outbound 63
transactional 25
transmitting 67

Remote servers
adding 52, 54
connection verification 54
definition 10
interface to 9
interfaces file entries 52
joins 56, 58
logging in 10
security issues 46
setting up external logins 53
transaction management 25

Remote tables
accessing 8
joins 56, 58

Removing. See Dropping 130
Reports

in-memory SRVDES structures 74
memory usage 74
remote connections 74

Resource allocation (sp_configure) 60
Results

cursor result set 140
rollback command

remote servers and 153
rollback command\ 154
rollback transaction command. See rollback command

154
rollback work command. See rollback command 154
Rows, table

See also select command 156
update 165

RPCs. See Remote procedure calls 25
Running a procedure with execute

remote servers 139
Running Component Integration Services 4, 52

rusage option, dbcc 74

S
Savepoints 154
sds server class 84
Search conditions

remote tables 31
Security

issues for remote servers 46
Security issues 46
select command

remote tables 155, 159
Server class access_server 83

connection management 35
datatype conversions 115
with text and image datatypes 33

Server class db2 83
connection management 35
datatype conversions 117
with text and image datatypes 34

Server class direct_connect 83
connection management 35
with text and image datatypes 33

Server class generic 85
connection management 35

Server class sds 84
Server class sql_server 83

connection management 35
with text and image datatypes 32

Server classes 8
See also individual server class names 8
access_server 83
db2 83
direct_connect 83
generic 85
sds 84
sql_server 83

set command
See also individual set options 160
remote queries 160

Setting up Component Integration Services 4, 52
setuser command

remote objects and 162
sp_addexternlogin system procedure 53

Index

190

sp_addobjectdef system procedure 11, 55
sp_addserver system procedure 53, 57
sp_autoconnect system procedure 20
sp_capabilities system procedure 87
sp_configure system procedure 5, 60
sp_defaultloc system procedure 11
sp_passthru system procedure 20
sp_remotelogin system procedure 46
sp_remotesql system procedure 21
Space

adding to database 90
sql.ini file 52
sql_server server class

connection management 35
srvdes option, dbcc 74
Start-up recovery, disabling 76
Statistics

update statistics 169
Storage location for remote tables 11
Stored procedures

executing remote 139
Subqueries 156
Syntax, using native database. See Passthrough mode 17
sysconfigures system table

updating values in 61
sysservers system table

remote servers for Component Integration Services
53, 82

System activities
setting query processing option for 161

T
Tables

changing remote 90, 92
creating proxy 110
creating remote 122
dropping proxy 137
read-only 29
remote access 8
remote, joins 56, 58

Tables, proxy
defining 11, 15, 17
triggers 45

text datatype 30

bulk copy to remote servers 32
converting 31
entering values 32
error logging 32
padding 31
pattern matching 31
restrictions 30
with server class db2 34
with server class direct_connect or access_server

33
with server class sql_server 32

@@textsize global variable 31
textsize option, set 31
Timeout, connect 63
Trace flags 75
traceon/traceoff option, dbcc 75
Transaction canceling. See rollback command 154
Transaction management 22, 26
Transactional remote procedure calls 25
transactional_rpc on option, set command 26
Transactions

ending with commit 103
preparing 149
See also Batch processing\ 154

User-defined transactions 154
Transmitting remote procedure calls 67
Triggers 45
truncate table command

query plan for remote tables 45
remote tables 163

Trusted mode 46
Tuning

Component Integration Services 59

U
Undoing changes. See rollback command 154
update command

remote tables 164
update statistics command

defining existing tables and 16
obtaining complete distribution statistics 76
remote tables 39, 76, 170

Updating
image datatype 33

Index

191

indexes 75
text datatype 33
writetext 172

User-defined stored procedures, executing
RPCs 139

User-defined transactions
See also Transactions 97
begin transaction 97
ending with commit 103

Users 163
Users of Component Integration Services 4
using option, readtext

errors from 32

V
Variables, configuration. See Configuration parameters

60
Verifying connectivity 54

W
Wildcard characters 31
Work session, set options for 161
Write operations

logging text or image 172
writetext command

remote tables 171

Index

192

